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Abstract— We present a robot base placement and control
method that enables a mobile manipulator to gracefully recover
from manipulation failures while performing tasks on-the-move.
A mobile manipulator in motion has a limited window to com-
plete a task, unlike when stationary where it can make repeated
attempts until successful. Existing approaches to manipulation
on-the-move are typically based on open-loop execution of
planned trajectories which does not allow the base controller
to react to manipulation failures, slowing down or stopping as
required. To overcome this limitation, we present a reactive base
control method that repeatedly evaluates the best base placement
given the robot’s current state, the immediate manipulation task,
as well as the next part of a multi-step task. The result is a system
that retains the reliability of traditional mobile manipulation
approaches where the base comes to a stop, but leverages
the performance gains available by performing manipulation
on-the-move. The controller keeps the base in range of the
target for as long as required to recover from manipulation
failures while making as much progress as possible toward
the next objective. See benburgesslimerick.github.io/
MotM-FailureRecovery for videos of experiments.

I. INTRODUCTION

Performing multi-step mobile manipulation tasks, such as
pick-and-place tasks, with the mobile base in motion has
been shown to be an effective means of reducing execution
time [1]. However, performing tasks on-the-move introduces
a new challenge for recovering from failures. In particular,
if the manipulation is not completed while the robot transits
past the target, the robot will be unable to recover without
incurring a significant time cost as it returns to the target.

Existing approaches to manipulation on-the-move are
typically based on open-loop execution of a planned trajectory,
where a single attempt at the task is planned [1]–[6]. If
any failure occurs, such as a poorly executed grasp, a new
trajectory is required, which is likely to require significant
planning time.

A close analogue to this problem is grasping an object
from a moving conveyor, where there is a limited window
for completing the grasp. Existing approaches to conveyor
grasping typically do not have time to recover from a failed
grasp [7]–[9]. A mobile manipulator introduces the possibility
to reactively adjust the base motion to ensure that sufficient
time is available to complete a manipulation task, while still
minimising execution time in multi-step tasks.

A recent reactive approach [10] to manipulation on-the-
move has been presented which allows for online repeat
attempts in the event of a manipulation failure. In [10], a
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Fig. 1: Frames from video of each method performing a
pick-and-place task with a grasp failure delay of 6 s.

simple base placement and control system is implemented
which does not consider how the base should be best
controlled to allow sufficient time for the manipulator to
recover from the failure, while also completing the task as
quickly as possible.

In this work we present a reactive base control system that
integrates with the architecture presented in [10] and allows
for failure recovery during manipulations performed on-the-
move, while also minimising task execution time. The method
is investigated in simulated pick-and-place experiments and
compared with two baseline approaches representing existing
reactive approaches to mobile manipulation and more recent
on-the-move methods (Fig. 1).

Our results demonstrate the effectiveness of the proposed
approach in handling failures and reducing execution time in
multi-step mobile manipulation tasks. The proposed method
outperforms traditional approaches to mobile manipulation
and more recent on-the-move methods in terms of task
completion rate and execution time.
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Fig. 2: Three example pick-and-place scenarios. The green
circles represent the area in which the robot can reach the
object. The red circles indicate the area in which the robot
will collide with the table the object is resting on. The red
paths present example trajectories the robot could transit to
perform the task.

II. PROBLEM DEFINITION

Graceful recovery from a failure during on-the-move
tasks introduces new challenges for mobile manipulator base
control. In this work, we focus on pick-and-place tasks where
a single object must be grasped and then dropped in a new
location. To successfully recover from a failed grasp, the
robot must stay within reach of the object until the grasp
can be completed. However, there is often an opportunity to
improve overall task time by continuing base motion toward
the place location for as long as possible. For tasks where
multiple objects need to be transported or there are multiple
acceptable drop points, the optimal decision may be to change
targets entirely. We do not consider these cases in this work.

We identify the three scenarios presented in Fig. 2 as rep-
resentative of common pick-and-place tasks. These scenarios
do not represent an exhaustive list, but illustrate how the
arrangement of the environment impacts the amount of time
the object will be within reach of the robot as it drives past.
For the obstructed turn scenario, there is significant time for
the robot to recover from a failed grasp while it drives around
the object toward the drop point. By comparison, the turn
environment presents a very limited manipulation window.
To gracefully recover in all scenarios, the goal for the mobile
base should be selected, and adjusted online, such that the
object is kept within range until the grasp is completed. We
focus only on minor manipulation failures where the grasp
can be immediately reattempted. Larger failures, such as
the object falling to the floor, require additional recovery
behaviours.

III. RELATED WORKS

The base-placement problem for mobile manipulation
determines a collision-free pose for the robot base from which
to perform a manipulation task [11]. Approaches typically
aim to generate solutions that are optimal against some other
metric such as manipulability [12], [13], or stiffness of the
robot [14]. Other approaches aim to minimise task time by
calculating base poses from which multiple targets can be

reached without repositioning the base between tasks [15],
[16]. Time efficiency can be optimised on multi-step tasks
by choosing a pose based on where the robot must go after
the immediate target [17], [18]. Reactivity can be achieved
by frequently recomputing the optimal base pose [17].

Although the system presented in [17] selects optimal base
placements considering both the immediate and next target
in order to reduce overall execution time for pick-and-place
tasks, it does not explore further performance improvements
possible by performing the pick and place actions while the
robot is still in transit. Instead, the base comes to a stop
while the robot performs the manipulation. A benefit of this
approach is that in the event of a grasp failure it is trivial
for the arm to reset and reattempt the task. By comparison,
methods that explore manipulation on-the-move including
those presented in [1]–[6] cannot easily reattempt a task in
the event of a failure because the robot may be driving away
and out of reach of the object.

We wish to unify the benefits of both on-the-move and
stationary grasping approaches. In particular, we desire a
system that will perform tasks on-the-move where possible,
but slow down or stop when a manipulation failure requires
increased time near a target.

IV. APPROACH

We divide the base control system into two components: a
base placement module and a base controller.

A. Base Control

The base controller is a modified version of the Short
Term Aborting A* (STAA*) reactive mobile robot controller
presented in [19]. This system plans global paths with an A*
search through a visibility graph, and generates the optimal
path to a given pose, avoiding obstacles in the scene. This
global path is intersected with a local grid around the robot
to provide an intermediate target for the base. The system
generates a plan towards the intermediate target which is
aborted either when the goal is reached, or a timer expires.
By aborting the search and enforcing an update frequency
the system achieves real-time reactive control.

We have introduced several modifications to the controller
presented in [19] to improve its performance in a manipulation
on-the-move scenario.

1) Goal Orientation: The most important addition to
STAA* is the inclusion of an orientation to the goal state.
Where STAA* considers driving to a point only, we include
orientation which enables poses to be achieved that smoothly
connect the immediate target with the next goal.

2) Rotation in Global Planner Cost: The addition of
orientation to the goal state requires modification to the
node cost computation used in the global A* search. STAA*
uses only the cumulative distance between nodes along a
path to compute the cost. Instead, we consider a PathRTR
metric that estimates the time required to both translate and
rotate between nodes along a path. Further explanation of
the PathRTR metric is presented in [19]. Fig. 3 illustrates the
value of including rotation costs in the global path planner.



Fig. 3: A comparison of global paths generated by our
modified STAA* (path in red) and the original (shown in
yellow) for an example goal pose. The red x axis of the target
frame represents the desired forward direction.

For the scenario shown, the path in red generated by our
modified version encourages the robot to drive a smooth
curve around the obstacle connecting the start and end pose.
Without rotation costs the shortest path passes the obstacle
on the other side and requires significantly more turning.

3) Search Termination Conditions: The implementation
of STAA* presented in [19] terminates its search when an
explored node is sufficiently close to the goal. To perform
manipulation on-the-move, we want to encourage the robot to
drive through the current target at high speed. Therefore, we
also terminate when the path between a node and its parent
passes sufficiently close to the goal.

4) Reduction of Proximity Grid Penalty: STAA* includes a
penalty on nodes based on their proximity to obstacles using
an inflated occupancy grid. However, to complete mobile
manipulation tasks such as picking and placing objects from
a table, the robot must necessarily travel close to the table
while interacting with objects on it. For example, in Fig. 4,
the occupancy grid is represented by the colour of the ground
around the robot, with green representing free space, and red
representing occupied space. In this case, the target pose for
the base from which it can perform the grasp is in a region
with moderate proximity. The penalty applied to nodes near
obstacles inhibits the exploration of states near the goal. To
limit this effect, we reduce the weight of the proximity grid
cost based on the expected time to the goal. We scale the
grid penalty by k = max (0.1,min (th/3, 1)) where th is the
estimated time until the goal is achieved.

B. Base Placement

The optimal base placement is selected from a discretised
set by evaluating the path cost both from the current robot
pose to candidate base placements as well as from the
candidates to the drop point. Candidates are evenly spaced
around the target object in 10◦ increments on a circle of radius
0.6 m, for a total of 36 possible base positions. Each position
is assigned two possible orientations, the robot’s forward
vector can be tangential to the circle facing either clockwise
or counter-clockwise which gives a total of 72 candidates.
In Fig. 4, each coloured sphere represents a candidate, with
those in the top ring possessing a counter-clockwise heading,
and those in the bottom facing clockwise.

Fig. 4: Illustration of sampled base placement results for
a pick-and-place task. Each coloured sphere represents a
candidate base placement around the target object. Those in
the top ring represent a counter-clockwise heading, while
those in the bottom face clockwise.

The path cost for each candidate is evaluated using the
global planner from the base control system. The highest-
ranked pose from the candidate set is used as the goal for
navigation. The result is a method that selects a candidate
base placement that is within manipulation range of the target
and efficiently connects the current robot pose with the drop
pose. For example, the spheres in Fig. 4 are coloured based on
their path cost, with green representing the lowest cost. The
selected base pose (shown by a target frame) encourages the
robot to travel counter-clockwise around the object driving
towards the drop point while it completes the grasp.

To enable failure recovery, the desired base placement
should be continually updated in response to the current state
of the robot. If more time is required to recover from a
failed grasp, the system can then reevaluate the optimal base
pose which is within manipulation range of the object, but
as close as possible to the drop point. We evaluate each of
the candidates on every controller step (20 Hz).

V. BASELINES

We compare our method with two baselines that represent
common approaches to mobile manipulation. All methods
share the arm control method presented in [10].

A. Conventional Reactive

The first baseline is representative of several reactive
controllers for mobile manipulation such as those presented
in [20]–[23]. In this baseline, the base placement method
proposes the collision-free pose within manipulation range
of the object that is closest to the robot’s current position.
The base is controlled to this pose using the Timed Elastic
Band implementation provided by the ROS Navigation stack3

which provides reactive control and obstacle avoidance.

B. Planned On-The-Move

The planned baseline is similar to the proposed method
but does not recompute the optimal base pose. Effectively,
the base follows a precomputed path from the initial state

3https://wiki.ros.org/navigation

https://wiki.ros.org/navigation


Fig. 5: Results for simulated pick-and-place tasks with varying
grasp delays in three different scenarios.

to the drop point. This is representative of planning-based
on-the-move approaches such as [1]–[6], [24]. It should be
noted that these approaches use a planned trajectory for the
arm motion which does not allow for repeat grasp attempts.

VI. EXPERIMENTS

Experiments are conducted with the three arrangements of
pick-and-place locations presented in Fig. 2. Failures were
simulated by artificially causing grasp attempts to fail for
a set amount of time after the first grasp attempt is made.
This allows for investigation of the expected performance
when performing tasks of varying complexity, where it may
take longer to recover from failures in more challenging
tasks. We test each system in each scenario with grasp failure
delays between 0 and 10 seconds, where a failure delay of
0 seconds represents success on the first attempt. For each
trial we record the total task execution time from the start of
the robot motion to the dropping of the object.

VII. RESULTS

Fig. 5 presents the total task execution time for each of
the methods in each scenario with varied delays caused by
grasp failures. Results are only shown for successful task
completions, and the lack of results for the planning baseline
at increased failure delay times is indicative of the robot
failing to grasp the object while driving past.

In all cases, the on-the-move methods complete the task in
less time than the reactive baseline. This is expected, however,
it is interesting to note that the magnitude of the improvement
is dependent on the task. For example, in the turn task (Fig.
2b), the base placements and subsequent paths taken by the
reactive controller are relatively similar to those generated
by our method because the optimal path involves driving
straight to the target, turning around, and driving straight
back. In this case, there is little opportunity for the on-the-
move methods to make significant progress toward the next
target while performing the manipulation. By contrast, in the
task with an obstacle presented in Fig. 2c the robot can drive
a significant distance toward the drop point while the object
remains within reach.

The execution times for the reactive baseline increase
linearly with increasing failure delay time. This is expected
because the robot comes to a stop while it attempts to grasp
the object and stays stationary until the grasp is completed.
The robot can wait indefinitely providing the necessary time
to recover from any failure, and consequently, it is successful
in all trials.

The planned on-the-move baseline performs similarly to
our proposed method when the initially calculated optimal
path stays within the manipulation range for longer than
the failure delay time. However, for the tasks presented in
Fig. 2a and Fig. 2b, this is only the case up to a delay of
1 second. Longer failures result in the robot driving away
from the object before the grasp has been completed. For
the obstructed turn task (Fig 2c) the path naturally orbits
the object for around 5 seconds. Consequently, the planned
baseline can successfully complete the task with failure delay
times of up to 5 seconds. However, as the delay time increases
further, the robot drives away before the task is completed.

Fig. 1 presents snapshots from videos of each system
performing a pick-and-place task where the robot takes 6
seconds to recover from a grasp failure. At t = 12s, the
proposed method slows the robot to complete the grasp. The
planned on-the-move baseline continues moving toward the
drop point and is unable to recover from the grasp failure
while still in range of the object, resulting in a failed task.
The reactive baseline provides sufficient time near the object
to recover from the failure, but the base does not make
progress toward the drop point while the grasps are attempted,
increasing execution time for the pick-and-place task.

The proposed method combines the benefits of both of
the baselines. It performs tasks on-the-move with improved
execution times when the robot can make progress toward
the drop point while attempting to grasp the object. However,
by updating the optimal base pose in real-time, the system
compensates for delay times that exceed the typical transit
time of driving past the object. Instead, the robot will slow
down or come to a stop positioned as close to the drop point
as possible, allowing time for the grasp controller to recover
from failures, grasp the object, and complete the task.

VIII. CONCLUSION

Our proposed reactive base control system provides a
practical solution for handling failures in mobile manipulation
tasks performed on-the-move. However, many open questions
remain in this space. In this work the robot has no knowledge
of how long it might take to recover from a failure. Online
prediction of this information could be used to further improve
the system. Acceleration limits of the robot also have an
important impact on the optimal solution to a given scenario.
For example, a robot with a very limited acceleration might
achieve improved performance on the presented scenarios by
orbiting the object where possible instead of coming to a stop
to complete the grasp. These questions present opportunities
to further develop mobile manipulation systems that can
operate efficiently in complex environments and adapt to
uncertainties and failures.
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