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Abstract—Failures are typical in robotics deployments “in-
the-wild”, especially when robots perform their functions within
social human spaces. This paper reports on the failures of an
autonomous social robot called Lindsey, which has been used in
a public museum for several years, covering over 1300 kilometres
through its deployment. We present an analysis of distinctive
failures observed during the deployment and focusing on those
cases where the robot can leverage human help to resolve the
problem situation. A final discussion outlines future research
directions needed to ensure robots are equipped with adequate
resources to detect and appropriately deal with failures requiring
a human-in-the-loop approach.

I. INTRODUCTION

In recent years, various successes in robot navigation,
perception and planning enabled long-term deployments of
robot systems in a somewhat autonomous fashion. Robots
are more and more able to operate in dynamic environments
while perceiving their surroundings and the other entities in
them. Although robots can be embedded with state-of-the-art
manipulation, learning, and visual perception abilities, they
have not yet reached a level of autonomy which guarantees
failure-safe operation [7]. As such, even the longest running
deployments with state-of-the-art robotic systems show that
unexpected situations and failures are virtually impossible to
avoid [8].

As autonomous failure detection and recovery in-the-wild
is a hard research question, robotic systems of our day rely
on frequent expert interventions when failures occur. These
interventions may involve fixing a bug that caused the issue
in the first place, re-designing the system, or modifying and
replacing hardware to increase the robot perception and/or
computing power. Such resolutions are offline and require
expert programmer/engineer interventions. On the other hand,
in many cases, the unexpected situations can be resolved by
non-expert humans if the robot is able to detect the issue and
instruct humans on how to solve it. For example, if a robot is
unable to navigate because its wheels are stuck on a carpet, it
can ask for help from a nearby human for being freed away
from the obstacle, as is common practice with many robotic
vacuum cleaners used in domestic settings.
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Although performing tasks in human environments intro-
duces challenges for robots, there is a benefit to being among
humans: robots can always rely on help from nearby humans
to resolve difficult situations [12].

In this paper, we report on the failures that occurred over the
three-year-long deployment of Lindsey, a tour guide robot in
an archaeological museum 1, where the robot was programmed
to actively seek human interventions as a recovery or mitigat-
ing strategy for most failure cases. In analysing these failures
and recoveries, we attempt to inform future deployments of
autonomous social robots in-the-wild and suggest strategies
that can be employed to integrate the users into the recovery
procedure effectively.

II. RELATED WORK

Seminal studies in long-term deployments have initially
focused on robustness to allow autonomous operations, identi-
fying the interaction with humans as a necessity for recovering
from failures and performing tasks that the robot was not
able to [1], [11]. Indeed, several ad-hoc recovery strategies
to recover from failures have been proposed in the literature,
including within the STRANDS project [8], which featured
hard-coded autonomous recovery behaviours. These range
from a simple (i) wait and retry behaviour, which clears the
local cost-map and then re-issues the navigation command,
over a (ii) backtrack behaviour, which reversed the last N
motion commands, covering several seconds of operation,
sent to the robot to return to a previous position, up to an
(iii) interactive help seeking behaviour, in which the robot
would ask any human in its surrounding –verbally and by
screen display– to push it to a free area. Earlier analysis
in the STRANDS experiment [8] showed that around one
third of all robotic failures required eventual human help
as a last resort, after all autonomous behaviours had failed.
These examples underline the usefulness of deploying robots
to perform tasks in human environments, even when their
tasks do not require interacting with humans, where the robots
can always rely on the help from nearby humans to resolve
difficult situations [12]. Such human interactions are precious
and rare, and previous work builds on interactively learning

1https://www.lincolnmuseum.co.uk/robot-at-lincoln-museum
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Fig. 1. Lindsey, the mobile robot deployed as a tour guide in the Lincoln
Museum.

from human demonstrations as an invaluable tool to reduce
the robot reliance on humans over time [7]. Additionally, in
a scenario similar to the one presented here, Wang et al. [14]
reported extensive hardware, software and interaction failures
over their one-month deployment with a robot tour guide
system.

Previous work has studied failures in human-robot interac-
tion deployments by proposing different taxonomies for their
categorisation, in particular focusing on the user perception of
the failures and recoveries. For example, it has been studied
how robotics failures affect trust and the mitigation strategies
that can be employed thereafter [10], [13].

In this paper, we report on the failures that have occurred
in our long-term museum deployment and we focus on those
were the users could provide assistance to solve the issue or
those that directly involves the users in the interactions. Our
aims are to understand what strategies, whether direct or by
using learning approaches, can be used to increase the robot
autonomy by leveraging the users help in long-term scenarios.

III. IN-THE-WILD FAILURES AND RECOVERIES

This short article reports on the failures that have happened
during the long-term deployment of a tour guide robot, called
Lindsey and shown in Figure 1. The deployment started
in 2018 and is ongoing to date, having totalled more than
446 days of autonomous operation (excluding the periods
of interruptions caused by the COVID-19 lockdowns and
malfunctions) and navigated for more than 1300 kilometres.
The robot is available daily to the visitors of the museum, who
can start different interactive tasks with the robot, such as a
thematic guided tour where the robot guides them to several
items and explains what they are. More details about the robot
system and the interactive tasks are reported in our previous
work [5]. The failures reported in this article were collected
in the period between January 2019 and October 2022.

In the deployment presented in this work, most errors and
failures happen during navigation because it is the only action
performed requiring the robot’s physical movement. By being
potentially damaging to people and the environment, there
are multiple ways the action can fail as a result of safety

measures put in place. In addition to navigation failures, we
also consider social failures, as in the failures of the robot to
behave in a socially coherent way with the users.

The following failures, each with its own recovery strategy,
have been considered and reported in this article:

1) emergency button pressed: pressing an emergency button
on the robot cuts the power to the motors, making the
robot unable to move. In order to re-activate the motors,
the emergency button must be manually released. If they
are pressed when the robot starts a navigation action, it
actively asks the users to release the buttons.

2) bumper pressed: when the bumper on the base of the
robot detects a collision, a software node blocks the
robot motors. The motor block can be re-activated on-
demand by software. After a collision is detected and
the motors are blocked, the robot asks the users to be
slightly pushed to signal that it can continue to navigate.
Therefore, if a push is detected (as a change in the
robot’s odometry), the motor block is released.

3) navigation failure: the navigation planner is not able to
generate a viable path in the topological map because
the robot is stuck close to some obstacles. In this case,
the robot immediately stops its navigation action and
interactively asks the user to be dragged away from the
obstacle. After being moved, it restarts the navigation
action.

4) localisation failure: the localisation algorithm is not able
to correctly identify the location of the robot in the
environment. This failure can be recovered by making
the robot move around in an uncluttered environment to
recover the correct localisation, or by returning the robot
to its charging station (at which point the localisation is
automatically reset to the correct position). The robot
asks the users to contact a member of the museum’s
staff to be moved back onto its charging station.

5) navigating into a prohibited area: the museum staff
can select specific areas of the gallery to block the
robot from navigating in them. This feature is helpful
in several situations, such as when there is a school
visiting, when there are teachers who do not want to
be distracted by the robot, or for maintenance reasons.
The area blocking action can happen at any moment
while the robot is operating and has an immediate effect;
this may cause the robot to inadvertently navigate to
such areas or to find itself already in it at times. When
this happens, to ensure compliance with the blocking
request, the navigation is halted immediately with the
robot asking the users to call a member of staff to be
pushed outside the blocked area.

6) users walking away: this failure happens when the users
involved in an on-going interaction with the robot walk
away from the interaction before it is finished. The robot
can detect this failure by asking the users to confirm, at
specific points during the tasks, whether they want to
execute a certain action (for example, go to the next



TABLE I
FAILURES AND RECOVERIES SUCCESS.

Helped Non helped TotalFailure Successful Unsuccessful
1 166 (48.82%) 0 (0.00%) 174 (51.18%) 340
2 3220 (91.35%) 0 (0.00%) 305 (8.65%) 3525
3 706 (43.29%) 379 (23.24%) 546 (33.48%) 1631
4 7 (5.79%) 32 (26.45%) 82 (67.77%) 121
5 0 (0.00%) 15 (34.09%) 29 (65.91%) 44
6 N/A N/A N/A 470
7 N/A N/A N/A 5194

All failures 11325

Fig. 2. The rate of emergency button pressed and bumper pressed failures
that were helped by the users when the robot asked them to.

exhibit in the tour). If the robot does not receive a
response after one minute, it assumes that the users have
left the tour, and hence terminates the interactive task.
No recovery strategy is implemented to try and bring
the users back in the interaction.

7) users stop the interaction: this failure happens when
the users willingly stop the interaction with the robot
before it is finished. No recovery was implemented for
this class of social failure; the robot acknowledges the
users’ request to stop the interaction and farewells them.

IV. ANALYSIS OF FAILURE RECOVERIES

Here, we report on the amount of failures that have hap-
pened during the long-term deployment, divided into the
different failure types described above. In analysing these
failures, we report on the following amount: a) the rate of
failures in which the users have actively sought to help the
robot; b) the rate of failures that have been successfully
resolved by a recovery performed by the user.

Because of the nature of the failure types, a recovery
procedure was not devised and implemented for the users
walking away and users stop the interaction failures. For the
other failure categories, a helped failure was further classified
as successful or unsuccessful by using the following criteria:

• emergency button pressed and bumper pressed: always
successful, because the recovery requires a simple action
that, when executed, immediately allows the robot to
resume its operations.

Fig. 3. The rate of navigation failure, localisation failure and navigating into
a prohibited area failures that were helped by the users when the robot asked
them to. Out of all the helped ones, it shows the portion that turned out to
lead the robot to recover successfully.

• navigation failure: the recovery is considered successful
when the robot is able to successfully reach the navigation
goal afterwards.

• localisation failure: the recovery is successful when the
robot localisation improves to a level that enables au-
tonomous navigation before the end of the task.

• navigating into a prohibited area: the recovery is con-
sidered successful whenever the robot can successfully
navigate outside a prohibited area before the end of the
task, implying that the robot has been pushed outside the
area.

Table I shows the total absolute numbers of the failures
described in Section III with the portions that have been
helped/non-helped and, among the helped ones, those that
were successful/unsuccessful. In Figure 2, we show the rate
of failures 1 and 2 that have been helped versus those that
haven’t. In Figure 3, we show instead the rate of failures
3, 4 and 5 that were helped/non-helped, and those that were
successfully recovered afterwards.

From the data reported here, we can observe that some
failures are inherently more easy to recover from by exploiting
the human presence in the environment. For example, for the
failures reported in Figure 2 users were willing to help the
robot in more than 85% of the cases. By contrast, the re-
maining failures (excluding those that cannot be helped) were
helped just over 63% of the time. One possible explanation for
this difference is that, in the first case, the recovery procedure
requested is more easily understandable as it just requires
releasing a button or slightly pushing the robot, while, in the
second case, a more effortful recovery needs to be executed
by the users. Requesting user recoveries for the second group
of failures is still a valid policy since the chances of the users
helping and of the recovery being successful outweigh that of
the users not helping at all; however, the recoveries received
in this situation are more scarce and precious.

V. CHALLENGES AND OPPORTUNITIES

Here, we review a handful of challenges and opportunities
for future research that are particular to failure management



with service robots.

A. A wider taxonomy of failures

Although validation and verification are well-studied for
software and industrial robotics applications, there are only
a few studies which investigate failures in human-robot in-
teractions [3]. In addition to technical failures, robots can
also fail socially even though they are functionally error-free
[3], and any perceived failure makes the robot seem less
capable, lowers users’ trust, and can make people reluctant
to use the service again [2], [4]. This issue is evident in our
present deployment considering the large numbers of users
walking away and users stop the interaction failures, for
which no recovery procedure was found so far. There is a
need for multidisciplinary studies, bringing together different
stakeholders, to develop novel socio-technological theories for
human perception of robotic failures. Such an effort would
promote the development of human-robot interaction tools for
user-centred failure handling strategies.

B. Intuitive mechanisms for expressing failure situations

For non-expert users, it could be difficult even to reliably
identify if a robot is functioning properly or failing, and to
choose how to act if they perceive a failure. On top of this,
cognitive, psychological, and social determinants that should
impact the design of communication and failure mitigation
strategies are not well-studied [9]. These shortcomings limit
the design of effective management strategies for faulty and
unexpected behaviour observed by untrained users. As explain-
ability of AI is gaining interest across research fields, there is
great potential to design and develop robotic behaviours that
would enable easier failure identification and resolution.

C. Interactive and iterative learning systems

In a previous work [7], we proposed a two-layer cascaded
learning approach, where an “ask-for-help” paradigm is imple-
mented on Lindsey. In this paradigm, the robot gathers human
demonstrations when necessary, to incrementally learn local
navigation strategies to handle the failure when it happens.
To demonstrate the use of this model, we identified two
failure scenarios, where the global navigation typically fails 2.
This approach was useful to progressively increase the robot’s
competencies in detecting failures and recovering from them.
Differently, in [6], we implemented an in-situ reinforcement
learning algorithm to adapt the robot’s behaviour based on
minimising the chances of the users stopping or abandoning
the interaction with the robot. This approach can be seen as a
machine learning solution aimed at limiting the social failures
in human-robot interactions. Starting from the assumption that
failures cannot be eliminated or recovered altogether in in-the-
wild deployments, there is a great opportunity for integrating
machine learning methods in failure recovery and avoidance
frameworks to enable robots to continually learn to improve
their autonomy.

2The global navigation system on Lindsey is based on the move base
package from the ROS navigation stack.

VI. CONCLUSIONS

In this short paper, we reported on the failures that have
been observed over a 3-years long deployment of a social
robot in a public museum. By analysing the “human-in-the-
loop” recoveries for such failures, it can be observed that
the willingness of providing help and the effectiveness of
the help given varies among different failures. Based on
these results and on previous findings in the literature, we
provide suggestions for future research needed to ensure robot
autonomy in human-populated environments in the wild.
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