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Abstract— As robot swarms are increasingly deployed in the
real-world, making them safe will be critical for improving
adoption and trust. A robot swarm is composed of many
individual robots each susceptible to failure at any given time,
which may decrease the performance of the swarm as a whole.
The ability to mitigate such faults is therefore necessary. The
difficulty with designing a good mitigation strategy lies in
the complexity of the swarm as a system, where individual
interactions give rise to emergent behaviour. In this paper, we
aim to learn a mitigation strategy using neuroevolution in a
fault-discriminatory metric space. We demonstrate the strategy
in a realistic intralogistics use-case.

I. INTRODUCTION

Swarms have potential in the real-world: they are de-
centralized systems where an individual only has access
to knowledge of its local environment [1]. The overall
behaviour of the swarm emerges from local interactions.
Examples of real-world applications include search and
rescue [2], construction [3], and space exploration [4], [5]
[6]. However, in taking these applications from a research
environment to real-world implementation, there will need
to be a consideration of safety and, in particular, a method
to mitigate faults.

Traditionally, swarms have been considered to be robust
through redundancy of a large number of individuals [1]
although recent work has shown this assumption to be
false with the presence of partial failures in a swarm-taxis
behaviour [7]. If robustness does not hold for this particular
example, what other behaviours could be susceptible to
faults? This is a serious consideration if a swarm is to be
deployed in the real-world and motivates a need to develop
strategies for fault mitigation in the swarm.

The complexity of swarm dynamics means that learning
any behaviour to achieve a specific goal, indeed any mit-
igation strategy, in an optimal way is non-trivial. We ask
ourselves the following questions:

1) Can we assume that removal of a fault is always
the optimal strategy? Can partially failed robots still
contribute to the swarm?

2) If removal is not possible, what other strategies are
there?

3) Is there a threshold for tolerance, under which faulty
robots do not significantly affect swarm performance
and can be ignored?

4) What level of granularity should we consider for miti-
gation actions?

5) How can we evaluate the effectiveness of a learned
strategy?

6) What approach to learning should we take: evolutionary
algorithms, reinforcement learning or other?

In this paper, we take some initial steps to providing
answers to these questions. In particular for question 1, we
find that it may be beneficial to keep partially failed robots
in the swarm dependent on the mode of failure. We focus on
two variations of an intralogistics task, selected to test how
mitigation strategies might vary with the interdependence
of members of the swarm: random walk behaviour for box
retrieval and delivery, and collective transport where multiple
robots must coordinate to do the same. We select collective
transport as a task as it requires a level of coordination within
the swarm that usually requires direct communication, and
thus presents an interesting challenge for fault mitigation.

Motivated by previous work, we propose a method to learn
a mitigation strategy with the following properties:

1) Mitigation occurs on the level of the individual - each
robot selects the best action for overall swarm perfor-
mance.

2) Learning incorporates knowledge of faulty states of the
system - we would like to generate good strategies in a
“smart” way, to reduce computation.

3) Strategies are robust and adaptive.

Property (2) can be achieved without explicit fault de-
tection: in previous work, we considered endogenous fault
detection in a swarm - robots identifying their own faults
- based on what individuals could sense in their local
neighbourhoods [8]. We were able to extract metrics based
on local-sensing which were highly indicative of a fault.
By learning strategies on this metric space, which has high
discriminatory power between faulty and normal states of a
robot, we can reduce the search space of strategies.

In line with property (3), we turn to neuroevolutionary
algorithms: neuroevolution evolves a network to optimise for
a given criteria and is effective for searching continuous,
high-dimensional solution spaces [9]. It also maintains a
population of solutions during search, enables extreme ex-
ploration and may be more robust than some reinforcement
learning methods. A simple random search of static linear
policies, effectively a genetic algorithm applied to a single
layer neural network, has been shown to be competitive in
the model-free reinforcement learning space [10].

In the method we propose, we learn a strategy for decen-



tralized fault mitigation optimizing for swarm performance
(rate of box delivery) for the intralogistics task. We map
between local metrics of an individual robot to available
actions it may take. Although strategies determine how indi-
vidual robots behave, they are learned with respect to overall
swarm performance and this allows for implicit learning of
co-ordination between individuals. Finally, we will evolve
the strategy offline in simulation, evaluating performance at
the end of each simulation run.

II. RELATED WORK

Fault mitigation for swarms is a relatively new area of
research whereas there is extensive work for single robot
systems. We can identify two approaches in current work:
1) strategies which target a known fault and 2) strategies
which maximise the performance of a swarm without explicit
knowledge of fault occurrence. For the latter approach, faulty
states do not need to be defined nor detected in order for
mitigation to occur. The swarm adapts to overcome sub-
optimal states for a given performance metric. A diverse
set of behaviours can be generated or defined offline and
this allows the swarm to adapt online by selecting the best
performing behaviours. Previous work applies an “illumina-
tion” evolutionary algorithm called MAP-Elites to generate
a sufficiently diverse set of behaviours to this end [11][12].
Another work pre-defines sets of behaviours which may
be activated or de-activated by individuals in a multi-robot
system depending on an activation score [13]. In both these
works, behaviours are not designed to mitigate faults directly
but rather allow the system to tolerate the presence of faults.

In the first category where faults are targeted explicitly,
work has been done in learning mitigation strategies with
reinforcement learning and evolutionary algorithms [14]. Im-
mune system inspired approaches have considered granuloma
formation for energy transfer to recover a robot with low
power supply [15]. In both cases, non-faulty robots take
direct action to mitigate a fault. The identity of the faulty
robot is also assumed to be known. Mitigation actions are
behaviour-based, for example a robot may lead a faulty robot
to a repair station.

The “fault tolerance” approach has the advantage of being
independent of knowledge of faults. The system is able to
adapt without any method of fault detection. However, the
performance of this approach depends heavily on the quality
and diversity of pre-defined behaviours. To generate such
behaviours requires either expert knowledge of the system or
extensive computation. Where faults are targeted explicitly,
some method of fault detection will be required in a real-
world implementation of a fault mitigation pipeline.

The method we propose falls in the space between the
two approaches: we are not explicitly detecting faults but
we hope to target faulty states by learning mitigation actions
on a fault discriminatory metric space.

Fig. 1. Warehouse setup: boxes are represented by blue squares, robots by
circles. The drop-off zone is shaded orange at the top of the arena.

III. PROPOSED METHOD

A. Scenario

Swarms have the potential to be used out-of-the-box for
intralogistics in areas that have not yet adopted robotics,
such as SMEs, or in messy real-world environments [16].
In our use-case scenario, the robots operate in a 5m x 5m
bounded arena, which we refer to as the warehouse: robots
must retrieve and deliver boxes to the drop-off zone, a 75cm-
length horizontal strip extending along the width of the upper
boundary. Additionally, the boxes are raised up on tables
which the robots can detect and navigate under in order to
lift. We abstract the table and refer only to the boxes to
be lifted. Robots are able to detect objects (robot, box or
wall) via ArUco tags. Following previous work in our team,
the parameters of the scenario have been selected to match
as closely as possible the robot platform and the arena we
have available, our aim being to close the reality gap with
real-world tests [16] [17]. Table I and Fig. 1 summarize the
configuration.

TABLE I
CONFIGURATION

Property Value
Warehouse Dimensions 500 x 500 cm

Number of boxes 10
Number of robots 10
Box diameter 25 cm (task A), 50cm (task B)

Robot Diameter 25 cm
Cameras 4 x 120◦ FOV video cameras

equidistant on perimeter, 100 cm
range, used to detect objects in the
arena at short/mid-range;
1 x 120◦ FOV video camera
upward-facing for precise
positioning under boxes

Proximity 16 x IR laser time-of-flight,
3 m range, used for short-range
collision avoidance

Communication Bluetooth, 100 cm range
Robot max speed 200 cm/s (real-time)

B. Tasks and Base Behaviour

1) Task A: One robot is required to lift a single box.



2) Task B: Each box requires a team of four robots to
lift. We assume one robot to be positioned at each corner
and say the team is complete if the team size is exactly four.

If the team is not complete:

• Any robot in proximity of the box may join the team.
• Robots in the team will send signals to request other

robots to join.

If the team is complete:

• No additional robots may join the team.
• Robots must reach consensus before the box is lifted.

We then refer to the team as active.
• Robots must reach consensus before the box is de-

posited.
• The team is assumed to move at the velocity of the

slowest robot.

Additionally, robots may choose to leave a team at any
time and will communicate their intention to the rest of the
team. Such a decision will break any consensus to lift a box
in an active team and the team will attempt to drop the box
if possible.

C. Simulation Environment

The experiments are run on a C++ simulator developed
for the purpose of studying the intralogistics use-case sce-
nario. It adheres to real-world physical constraints. Further
considerations made in the simulation are:

• Initialization: Boxes and robots are placed at random
in the simulated arena.

• Object ID: Each object in the scenario (robot or box)
is given a unique ID.

• Robot states: These are states describing the active goal
of the robot: (1) a robot is searching for a box, and (2)
a robot is carrying a box ready for drop-off.
Task A: A robot in state (2) will immediately deposit
a box upon entering the drop-off zone and the box is
removed from the arena. It will then return to state (1).
Task B: Robots in a team will check for consensus to
deposit on entering the drop-off zone. Once deposited,
the team disbands and robots return to state (1).

• Robot movement:
Task A: Robots move stochastically in all states and they
select a new heading at random at a rate of once per
0.2 seconds.
Task B: Robots move stochastically unless they receive
a signal to join an incomplete team, in that case they
move towards the team. If robots are in a team, they
are considered to move together as one unit and the
chosen heading is the average of proposed headings
communicated from each robot in the team. Proposed
headings are also selected stochastically. All robots must
be able to move in the new direction in order for the
team to move.

• Obstacle avoidance: Robots have an avoidance margin
of 5cm to avoid collisions with each other, boxes and
walls.

D. Fault Injection

In previous work which required fault injection in simula-
tion, we considered a realistic sample of faults with respect
to the capabilities of the robots and the scenario [8]. We
consider the same set of faults in this work with the addition
of communication faults (e.g. failure to send or receive
messages) which may occur in task B.

When evolving the network between input metrics and
output actions, we aim for wide coverage of the input metric
space of values. This ensures that a robot is able to determine
the best action given any state encountered, hence producing
a robust strategy. In practice, this means covering all possible
number of faults (from zero faulty robots to all faulty robots)
across all fault types. We consider the following faults:
F1: 0% max speed
F2: 10% max speed
F3: 50% max speed
F4: Can’t lift boxes
F5: Can’t deposit boxes
F6: Radial camera (RC) failure (all cameras)
F7: Upwards-facing camera (UFC) failure
F8: IR laser failure (all lasers)
F9: Can’t broadcast messages

F10: Can’t receive messages
F11: Spam messages
F12: Sending incorrect messages
F13: Receiving incorrect messages

F6: refers to the cameras on the perimeter of the robot.
Faults F9:-F13: are communication faults relevant to task B.

The faults are injected at the beginning of each simulation
and last for the entire duration. Due to computational time
constraints, we also inject a single type of fault in each
simulation to reduce the number of scenario configurations.
In reality, there may be a correlation between fault types
with subsets of different faults that are likely to occur
together. Although exhaustive coverage of configurations
may be ideal, our main goal is to demonstrate successful
neuroevolution of mitigation strategies given a particular
scenario.

E. Mitigation Actions

Mitigation actions available are based on an individual’s
capabilities (sensing, actuation and communication). It is
important to choose the right level of granularity in these
actions to match the input metric space. We consider the
following set of actions:

A1: Decrease speed
A2: Stop moving
A3: Don’t join team
A4: Leave team
A5: Move lifter up

(pick up box)
A6: Move lifter down

(drop box)
A7: Attract nearest robot

A8: Repel nearest robot
A9: Move in a fixed direc-

tion
A10: Stop broadcasting mes-

sages
A11: Stop receiving mes-

sages
A12: Do nothing
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Fig. 2. Discriminatory power matrix for faults types vs. metrics: values sit in the range [0, 1] with 1 being the highest discriminatory power. We can see
a metric “signature” emerging where a correspondence between fault type and metrics with high discriminatory power may be identified [8].

(Actions cont.)
A13: Move towards nearest object (robot/box/wall)
A14: Move away from nearest object (robot/box/wall)

Here we assume that taking no action is also a valid
strategy - the motivation being that a robot moving slower
may still contribute positively to swarm performance, for
example.

F. Learning on a Fault-Discriminatory Metric Space

Our aim is to learn a strategy such that an individual
robot can act based on knowledge of its local environment,
local action which contributes positively to overall swarm
performance. The local environment can be represented by
metrics which capture the internal state of the robot or the
presence and proximity of other objects near the robot. In
particular, we are interested in metrics which can discrim-
inate between “faulty” and “normal” states of a robot, so
that we can learn the best mitigation action to take for each
state. In previous work we presented a statistical method for
identifying local metrics with high discriminatory power: in
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Fig. 3. Mitigation power for various strategies against fault types: these
preliminary trials hardcode the mitigation action to be taken when a robot
is faulty. The “mitigation power” is computed using the same statistical
method as for metric extraction albeit with values in the range [-0.5, 0.5],
computing the difference between a sample where no action is taken versus
a single mitigation strategy applied to all faulty robots.

summary, we applied the Mann-Whitney U test (a statistical
test of sample group difference) in combination with effect
size analysis to take into account sample size [8]. Figure
2 shows the metrics with highest discriminatory power for
different types of fault. We call the space of discriminatory
metrics, a fault-discriminatory metric space.

1) Preliminary Results: As an initial evaluation of the
selected mitigation actions, we performed preliminary trials
where the actions were tested against each type of fault. We
assumed that faults always occurred at the beginning of each
trial and that a faulty robot would choose the mitigation
action without delay. A second assumption was that only
a single fault type would be present in each trial ranging
from 1 to 10 faulty robots.

Figure 3 shows the mitigation power of various actions
against fault types. The mitigation power is computed ap-
plying the same statistical method as previously used for
metric extraction, albeit with values in the range [-0.5,
0.5], comparing the swarm performance with mitigation and
without. A negative score for mitigation power indicates that
a mitigation strategy has worsened performance and a pos-
itive score indicates an improvement. From this brute force
first pass, we get a sense of the effectiveness of particular
actions. In particular, all actions for fault “50% speed” have
a negative impact on swarm performance. This suggests that
partially failed robots may still contribute positively to swarm
performance as even removing these robots, for example,
causes the swarm to perform worse.

2) Neuroevolution: We will evolve a network using neu-
roevolution with the fault-discriminatory metrics as the input
and a probability of choosing any mitigation action (from
section III-E) as the output. The full list of input metrics is
to be determined for each task but we use metrics extracted
from previous work as a starting point [8]. The network
represents the controller of the robot. It will have a fixed
topology of two hidden layers, with ten neurons each. The
aim is to evolve the weights of the neural network. We will
employ parameters outlined in [18].



IV. DISCUSSION

We have taken initial steps towards answering the ques-
tions posed at the beginning of the paper. We have found in
preliminary results that a partial fault (e.g. robot moving at
half speed) may not be catastrophic and may still contribute
positively to swarm performance. If there is a threshold for
tolerance to faults, this will depend on the type of fault
together with the number of occurrences. Concerning choice
of mitigation actions: we have opted for a combination of
simpler motor actions and behavioural actions as a first
pass. These are actions at the level of the individual but, in
combination with the actions of other individuals, they may
create an emergent strategy. The trick then is in learning
local strategies which may propagate in such a way. One
way to drive emergent properties is to select an evaluation
metric for the performance of the collective. Here we choose
box delivery over time to evaluate how mitigation strategies
perform as part of the swarm behaviour.

Towards approach to learning: we believe that neuroevo-
lution offers much potential in learning mitigation strategies
for a swarm. To begin with, we are only exploring a simple,
fixed-topology network but may expand our scope depending
on necessity. For a task where robots in the swarm have
low interdependence (task A), the mapping between metrics
and actions may have low complexity. For task B, it will
be interesting to see if actions correlate to metrics which
indicate a robot belongs to a team. We can in fact extend
task B so that the scenario contains a mixture of single-
robot boxes and multi-robot boxes. The extended task could
provide a test for whether co-operative behaviours can be
learned using our method. Future work will be to implement
this neuroevolutionary approach and evaluate its effective-
ness. In particular, we would like to assess how alternative
approaches such as reinforcement learning might compare.

Finally, in this case we are mapping local metrics to
local actions but we can also ask whether we can map
group metrics to group actions. This is not at odds with the
decentralized nature of the swarm, as groups can be formed
and communicate locally. We may even find a mapping
between mappings (from local-local to global-global or vice
versa) which may pave the way to more powerful learning
methods for fault mitigation strategies.
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