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Abstract— State-of-the-art 6-DOF grasp estimators suffer
from failure rates as high as 10% to 15% which makes
the practical deployment of robots in human environments
challenging. The failing grasp attempts typically include also
grasp estimations having a high estimated grasp quality score.
This means that the grasp estimators can be overconfident
in estimating the quality score, leading to falsely high scores.
Detecting and eliminating the overconfident grasp estimations
before execution can help decreasing the grasp failure rate
and increase task success. We propose a novel method based
on introspective prediction of overconfident grasps using a
supervisor network. Our network takes the output grasp pose of
an estimator, the depth image and the point cloud at the grasp
location as input; and outputs a binary overconfidence label
which can be used to filter out overconfident grasp estimations.
Experimental evaluation with the selected quality thresholds
shows that filtering grasps with our supervisor network leads
to an increase in the rate of confident grasp estimations from
21% to 57%, and from 22% to 54% on the two test sets.

I. INTRODUCTION

Vision-based robotic grasp estimation is an advancing
field, yet the existing methods are not robust enough to
be fully deployed in unstructured environments like the
household. State-of-the-art methods can reach a failure rate
of 10% to 15% on household objects [1], [2], [3], [4], which
does not meet the requirements for deployment in our daily
life. To exemplify, a household robot with such failure rates
could easily create damage to the humans, the object to grasp
or the environment. Therefore, predicting and preventing
grasp failures is of great importance for the deployment of
robots in human environments.

Vision-based 6-DOF grasp estimation methods typically
output predicted grasp poses and quality scores. The grasp
poses are ranked according to their quality score and the ones
with a high quality score are executed primarily, for they are
expected to succeed. However, the robotic experiments show
that even these grasp estimations with a high quality score
are prone to fail [1], [2], [3], [4]. This shows that the grasp
estimation methods can be overconfident about the grasps
they predict, for the predicted grasp quality score is higher
than it should be in reality.

Vision-based 6-DOF grasp pose estimation often consists
of two main steps: perception and grasp estimation. In
the perception step, typically a depth image is acquired
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by a depth sensor. The obtained depth images contain
sensor-dependent noise and pixel regions without a valid
depth value, namely “depth holes”. Such imperfections by
perception directly affect the subsequent grasp estimation
step. Many state-of-the-art 6-DOF grasp estimation methods
operate on the point cloud generated from the acquired
depth image. Although the imperfections like the depth
holes are visible in the depth images, they are no more
prominent on the generated point cloud. This can be a reason
of grasp failures induced by the perception step. For the
grasp estimation step, the simulation-to-reality gap can be
named as an important cause of failures. The state-of-the-
art methods mostly deploy neural networks trained with
synthetic data that do not truly represent the realistic sensor
characteristics. Therefore, these methods are not capable
of overcoming the simulation-to-reality gap and can make
overconfident estimations.

To address this problem, we propose a method for de-
tecting overconfident parallel-finger grasp estimations, which
is based on the concept of introspective failure prediction
[5]. Benefitting from a largescale dataset [3], we create
data consisting of grasp poses and quality scores estimated
by two state-of-the-art 6-DOF grasp estimators [1], [2] on
the point clouds generated from the real depth images. In
addition, we evaluate the estimated grasps and create ground
truth evaluation scores using the force-closure metric on the
corresponding ground truth 3D scenes. Thereby, we obtain
the grasp estimations under depth perception imperfections,
but evaluate them on the 3D meshes without the adverse
effects of depth sensing. Using this data, we train a su-
pervisor network for a selected depth camera and a grasp
estimator, that learns both the sensor characteristics and the
simulation-to-reality gap behaviour of the grasp estimator.
The network receives the scene information and an estimated
grasp pose as inputs, and outputs a binary overconfidence
label. We extract features on both the point cloud and the
corresponding depth image crop around the input grasp
pose, aiming to detect overconfidence that may be caused
by the simulation-to-reality gap and imperfect perception.
Experimental evaluation showed over 80% accuracy for
detecting the overconfident grasps for the selected quality
thresholds in this work. After filtering out the overconfident
grasps estimated by our supervisor network, we can increase
the rate of grasps that are truly high quality, although some
of the high quality grasps are also eliminated. We provide a
more in-depth analysis in Section IV.



II. RELATED WORK

Various methodologies have been proposed for vision-
based 6-DOF grasp estimation. A typical 2-step framework
includes the grasp pose sampling and then the grasp eval-
vation steps [2]. The grasp evaluation can be performed
either analytically, by simulation, or in a data-driven way via
machine learning. More recently, grasp estimators based on
end-to-end neural network training were proposed [1]. These
methods receive the scene information, usually a point cloud,
as input, and give the estimated grasp poses and the quality
scores as outputs. Since they do not have separate steps for
grasp sampling and evaluation, these methods cannot be used
to evaluate given grasps.

In all vision-based grasp estimation methods, the accuracy
of the estimated grasp quality score is closely related to the
perception step, which is often not considered and can lead to
grasp failures. Additionally, out-of-distribution samples can
be a cause of grasp failures. The bottleneck of the system
can be caused by different elements for each method, which
may be hard to determine.

To address this issue, introspective failure prediction ap-
proaches can be used without the need for detecting the
exact source of the failure. Rather than analyzing each
modular part of a system, these approaches take the entire
system as a black box and train machine learning models to
detect the failure cases. Introspective failure prediction has
been applied successfully to other problems like autonomous
driving [6]. We follow this idea for grasp failure estimation
by defining the failures as “overconfidence”, standing for a
high estimated grasp quality score and a low analytically
computed ground truth score.

III. METHODOLOGY
A. Dataset Creation

Our aim is to detect whether a grasp pose with an
estimated high quality score is indeed high quality or rather
an overconfident estimation that may be likely to fail. To
train our supervisor network, we need grasp poses and
their quality scores estimated on real depth images, and in
addition, the ground truth grasp quality scores that are not
biased by the perception step.

The GraspNet-1Billion dataset [3] is appropriate for this,
it includes nearly 100,000 RGB-D images, along with the 3D
meshes and 6-DOF poses of the objects in the viewed scenes.
With this data, it is possible to generate grasp estimations
on the real depth images and evaluate them on the ground
truth 3D scenes. We use 100 scenes of the GraspNet1Billion
dataset to create our grasp overconfidence dataset. The pro-
cedure for creating the overconfidence dataset is as follows:

o Grasp estimations. We select depth images of the
GraspNetl1Billion dataset, and use object segmentation
masks to determine the region of interest for single
objects.

« We deploy a state-of-the-art grasp estimator and esti-
mate 6-DOF grasp poses on the point clouds generated
from the segmented depth images.

o Non-maximum suppression is applied to eliminate
grasps having a similar pose.

o Grasp evaluations. We generate the 3D scenes using
the object meshes and their ground truth object poses
given in the GraspNetlBillion dataset.

o For each estimated grasp, we determine which object
it is grasping in the 3D scene by checking the closest
object point in the middle of the gripper fingers.

o« We determine if the grasp area inside the gripper is
empty or the gripper is in collision with the point cloud.
In these cases, we label the grasp as empty or colliding.

o If not empty or colliding, we evaluate the grasp pose
on the corresponding object mesh by using the force-
closure metric as in [3]. We test different friction
coefficients and obtain a grasp stability score.

We create 4 different grasp confidence datasets each with

a different grasp estimator-sensor combination. The selected
state-of-the-art estimators are Contact-GraspNet and 6-DOF
GraspNet. The depth images acquired by Intel RealSense 435
or Kinect 4 Azure are used in each combination. In total we
generated and evaluated nearly 5 million 6-DOF grasp poses.
An analysis of the created data is given in the next section.

B. Cross-Score Analysis and Overconfidence Labeling

The overconfidence dataset includes two kinds of grasp
quality scores for each grasp pose:

« Estimated grasp quality score on the real depth image.
Note that this is data-driven for the selected grasp
estimators and shows estimator-specific behaviour.

o Force-closure score computed analytically on the
ground truth 3D scene based on different friction co-
efficients [3].

The grasp score distribution of the created datasets is
shown in Fig. 1. For each matrix, the horizontal axis shows
the estimated grasp quality scores, the right direction indi-
cates a higher stability estimation. The vertical axis indicates
the force-closure friction values obtained by evaluation on
the 3D ground truth scenes, the upper direction indicates
more stable grasps. The last row of each matrix indicates
empty or colliding grasps.

The first row in Fig. 1 (subfigures a. and b.) shows
the score distribution of the grasps generated by Contact-
GraspNet [1] and the second row (subfigures c. and d.) shows
the distribution obtained with 6-DOF GraspNet [2]. Left ma-
trices (subfigures a. and c.) show grasps estimated using the
RealSense images, and the right matrices (subfigures b. and
d.) using the Kinect images. The estimator-specific behaviour
is visible as the difference between the first and second rows,
although both methods have been originally trained with
similarly generated synthetic data. The comparison of the
left and right matrices within the rows suggests that the type
of the camera does not affect the grasp score distribution
behaviour as much as the grasp estimator choice. It is worth
noting that many of the grasps generated by 6-DOF GraspNet
are labeled as colliding, because this method is trained with
isolated objects and does not consider collisions, however
the scenes we use are cluttered.
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(a) Contact-GraspNet [1] estimations on RealSense depth images

024 © 33 186 585 1581 3373 6854 10855 14711 9202
[}
2 04{ o0 224 822 2311 5374 10900 18809 28097 33256 16800
g
5 06 © 446 1386 3285 6915 12245 18845 25720 28674 14051
2
8
E 0.8 4 o 665 1604 3465 6316 9938 14279 18949 20528 9751
(0]
2
§ 10{ o 768 1769 3162 4993 7417 9680 12247 12781 5837
S
& 12{ o 1405 2245 3324 4699 6064 7348 8490 8689 3976
3
o
[}
L | 5124 o 11545 17314 25418 36167 49429 52679
0.0 01 02 03 04 05 0.6 07 0.8 0.9 10
.
o ¥,
Z5 & 0 38226 59538 90554 87941
2= g
£ 5 w : L !
o 8
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Grasp quality score estimated on depth image

(c) 6-DOF GraspNet [2] estimations on RealSense depth images
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(b) Contact-GraspNet [1] estimations on Kinect depth images
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(d) 6-DOF GraspNet [2] estimations on Kinect depth images

Fig. 1: The grasp score distribution of the created datasets. The darker color indicates a higher number of grasps.

Overconfidence labeling. If both the estimated and the
evaluation scores are high, we deduce that the grasp is indeed
high quality and the grasp estimator is rightly confident. On
the other hand, if the estimated score is high but the ground
truth score is low, we assume that the grasp estimator is
falsely overconfident and we label these grasps accordingly.
We do not label the grasp estimations with a predicted low
quality score (left region of each matrix), because they are
not creating an overconfidence case. These grasps already
have low predicted scores and therefore they are not executed
by the robot in principle.

Grasp quality thresholds. To create binary labels for
overconfidence, we select the subset of all grasps that have
an estimated quality score higher than 0.4 (right region in the
figures). In this subset, we label the grasps as overconfident
if the corresponding force-closure score requires a higher
friction value than 0.4 (lower right region). The rest of the
subset (upper right region) is labeled as correctly confident.
Note that, although we use the same threshold value (0.4)
for both scores, the metrics are different from each other and
there can be other valid choices as well.

C. Supervisor Network Architecture

The structure of our network is given in Fig.2. 6-DOF
grasp evaluation requires 3D information processing, and this

is typically performed using point clouds. We process the
point cloud crop at the grasp location with the PointNet-
based upper branch. Since sensor imperfections can be more
evident in the depth image domain, we additionally process
the corresponding depth image crop at the grasp location
in a CNN-based branch. We fuse the CNN features and the
corresponding point cloud features densely by concatenation,
as shown in the middle of Fig.2. The general architecture of
our network is inspired by DenseFusion [7], however the
DenseFusion network has a CNN branch processing RGB
instead of the depth image to estimate the 6-DOF object
poses. We replace the CNN branch by the depth processing
CNN branch of another network [8] from the surface normal
estimation literature.

IV. EXPERIMENTS

Datasets. We train and test our supervisor network on
two of the created datasets: RealSense-Contact-GraspNet and
Kinect-Contact-GraspNet. We use the grasp poses estimated
on the first 85 scenes of GraspNetlBillion dataset for train-
ing, and the poses estimated on the next 15 scenes for testing.
Some statistics on the used datasets are given in Table 1.

Inference. Each input sample to the network consists
of the local point cloud at the grasp location, the crop of
depth image around the corresponding pixel location, and
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Fig. 2: Supervisor Network Architecture. The point cloud features and depth image features are fused in the middle.

TABLE I: Statistics on the datasets used for training and test

Dataset (created using | Total nr. | Overconfident | Confident
Contact-GraspNet) of grasps | grasps % grasps %
Kinect - Training set 185,314 71.25 % 28.75 %
Kinect - Test set 31,843 78.76 % 21.24 %
RealSense - Training set 156,128 69.78 % 30.22 %
RealSense - Test set 23,244 77.77 % 22.23 %

the estimated grasp pose given by the 6-DOF grasp estimator.
The local point cloud is transformed to the grasp pose frame,
inherently encoding the grasp pose into the input, as done
in the literature. The output of our network is a binary label
showing the overconfidence.

Implementation details. We take the 1000 points around
the grasp location, and use a crop of 512x512 by the depth
image. We train our neural network on an NVIDIA GeForce
GTX 1080 with 8 GB memory that allows a batch size of 4.
We use Adam optimizer and Negative Log Likelihood Loss
function with class-wise normalization weights to counteract
data imbalance in the datasets. The learning rate is initiated
at 0.0001 and is reduced at 30th epoch by a factor of 0.7.

Results. Tables II and III show the experimental evaluation
results after training for 32 Epochs. The results indicate that
the supervisor network successfully detects the overconfident
grasps with high accuracy, precision and recall values. For
confident grasps, we observe that the precision and recall
values are lower. Considering the data imbalance (see Table
I), this indicates that some of the confident grasps are
mislabeled as overconfident. Overall, we can deduce that
the supervisor network is oversensitive and eliminates some
of the good grasps as well. However, this ensures that the
remaining grasps have a considerably lower overconfidence
rate, therefore the remaining estimations are expected to
lead to higher grasp execution success. Tables I and III
show the confidence rates before and after filtering the grasp
estimations. After filtering, we see a boost in the rate of
confident grasp estimations from 21% to 57% on the Kinect
test set, and from 22% to 54% on the RealSense test set.

V. CONCLUSION

We proposed a novel method for introspective prediction
of overconfident grasp estimations to avoid grasp failures.
We created datasets using real depth data and state-of-the-art
grasp estimators. Experimental results indicate a successful
elimination of overconfident grasps, at the cost of losing

TABLE II: Quantitative evaluation of overconfidence estima-
tion for grasps in the Kinect and RealSense test sets

[ Type of grasps [ Accuracy| Precision| Recall [ Fl-score |
Kinect test set:
Overconfident grasps 0.82 0.89 0.88 0.88
Confident grasps 0.82 0.57 0.61 0.59
RealSense test set:
Overconfident grasps 0.80 0.89 0.85 0.87
Confident grasps 0.80 0.54 0.63 0.58

TABLE III: The rates after filtering out overconfident grasps

Dataset Nr. of remain- | Overconfident | Confident
ing grasps grasps % grasps %

Kinect - Test set 7,266 42.93 % 57.07 %

RealSense - Test set | 6,034 46.42 % 53.58 %

some of the confident grasps. The future work can include
extension of the datasets, improvements in the neural net-
work architecture for better accuracy and generalization, and
robotic experiments for empirical evaluation.

REFERENCES

[1] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-
graspnet: Efficient 6-dof grasp generation in cluttered scenes,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 13438-13444.

[2] A. Mousavian, C. Eppner, and D. Fox, “6-dof graspnet: Variational
grasp generation for object manipulation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
2901-2910.

[3] H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: A large-
scale benchmark for general object grasping,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11444-11453.

[4] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie,
and C. Lu, “Anygrasp: Robust and efficient grasp perception in spatial
and temporal domains,” arXiv preprint arXiv:2212.08333, 2022.

[5] S. Daftry, S. Zeng, J. A. Bagnell, and M. Hebert, “Introspective
perception: Learning to predict failures in vision systems,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 1743-1750.

[6] C.B. Kuhn, M. Hofbauer, G. Petrovic, and E. Steinbach, “Introspective
failure prediction for autonomous driving using late fusion of state and
camera information,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 5, pp. 4445-4459, 2020.

[7] C. Wang, D. Xu, Y. Zhu, R. Martin-Martin, C. Lu, L. Fei-Fei, and
S. Savarese, “Densefusion: 6d object pose estimation by iterative dense
fusion,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2019, pp. 3343-3352.

[8] J. Zeng, Y. Tong, Y. Huang, Q. Yan, W. Sun, J. Chen, and Y. Wang,
“Deep surface normal estimation with hierarchical rgb-d fusion,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 6153-6162.



