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Abstract— Currently, there are two existing methods to
compute the fault-tolerant workspace of a redundant robot
arm. However, both of these methods are very computationally
expensive. This work proposes using a mixture density network
to learn the probability of a rotation angle belonging to the
fault-tolerant rotation ranges, and combining rotation angles
having high probabilities together to generate the fault-tolerant
workspace. Because this method is computationally efficient,
it can be used alongside a genetic algorithm to compute the
optimal link lengths and artificial joint limits to maximize
the area of the fault-tolerant workspace. The predicted fault-
tolerant workspace is compared to the actual fault-tolerant
workspace, which shows they are both very similar. Finally,
the proposed method is used to generate a trajectory that is
tolerant to arbitrary joint failures.

I. INTRODUCTION

Robots are well-suited for replacing human workers in
hazardous, isolated, and remote tasks, such as nuclear waste
cleanup [1], space exploration [2], and disaster relief [3].
Nevertheless, these environments present very challenging
conditions, including extreme temperatures, high radiation
levels, and unstable structures, which can lead to frequent
joint malfunctions. Furthermore, because these environments
are inaccessible to humans for repair purposes, ensuring the
dependability and resilience of robotic systems requires fault
tolerance. One possible approach to achieve fault tolerance
is to use kinematically redundant robots, which have more
degrees of freedom (DOFs) than are required to accomplish
the assigned tasks. However, kinematic redundancy alone
is insufficient to guarantee fault tolerance [4], so motion
planning algorithms with intelligent optimization before and
after arbitrary joint failures must be developed.

The two most common types of tasks are point-to-point
tasks, such as pick and place tasks, and trajectory-following
tasks, such as arc welding tasks. For point-to-point tasks,
fault tolerance can be simply guaranteed by constraining the
joints moving inside the bounding boxes enclosing the self-
motion manifolds of the target point, which provides a set of
artificial joint limits [5]. For trajectory-following tasks, the
most efficient way to guarantee fault tolerance is to locate the
end-effector trajectory within the fault-tolerant workspace,
which is the workspace that can be achieved by the robot
both before and after an arbitrary joint failure for a given set
of artificial joint limits [6]. Therefore, the robot will be able
to complete the entire end-effector trajectory after a failure.
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The key problem is how to compute fault-tolerant
workspace for a given set of artificial joint limits, which
is not an easy job even for planar 3R robots. There are
two existing methods. For the first method developed in
[7], the conditions of pre-failure workspace boundaries and
post-failure workspace boundaries are first identified, and
then final fault-tolerant workspace boundaries are obtained
by taking the intersections of all the curves. Based on this
method, a gradient ascent method is applied to maximize
the failure tolerant workspace area [8]. The concept of fault-
tolerant workspace is further extended to reliability maps for
probabilistic guarantees of task completion [9]. The other
method of computing fault-tolerant workspace is discretizing
the half plan whose normal is perpendicular to the rotation
axis of the first joint, and then determining the rotation range
of the first joint to guarantee all the associated workspace
positions are within the fault-tolerant workspace [10].

It can be seen that both of the above existing methods
are very computational expensive. For the first method, it is
numerically challenging to compute the intersections of all
potential boundaries. For the other method, the procedure of
identifying the fault-tolerant rotation range of the first joint
needs to be repeated for each sampled cell in the workspace.
In this article, the problems of efficiently computing fault-
tolerant workspace of planar 3R robots and design optimally
fault-tolerant planar 3R robots and artificial joint limits are
studied. The main contributions of this paper are as follows:
(1) a new method based on mixture density networks is
developed to compute the fault-tolerant workspace of planar
3R robots. (2) A genetic algorithm is applied to identify the
optimal robot kinematic structure parameters and artificial
joint limits to maximize the fault-tolerant workspace area.

II. BACKGROUND ON COMPUTING FAULT-TOLERANT
WORKSPACE

For each joint i, its artificial joint limits Ai is defined
as Ai = [ai, ai], so the pre-failure configuration space
is CA = A1 × · · · × An, where n is the number of
joints. The pre-failure workspace W0 can be computed as
W0 = f(CA), where f is the forward kinematics function.
If joint i is locked at qi = θi, where θi ∈ [ai, ai], the
artificial joint limits of the remaining joints are released, so
the post-failure configuration space is given by iC(θi) =
{q ∈ C|qi = θi}. Therefore, the post-failure workspace
Wi, which is defined as the reachable workspace after joint
i is locked at any angle between its artificial joint limits,
is given by Wi =

⋂
ai⩽θi⩽ai

f(iC(θi)). Finally, the fault-



tolerant workspace WF , which is the reachable workspace
locations both before and after an arbitrary failure, is defined
as WF =

⋂
i∈F∪0

Wi, where F is a set of the locked joints.

A general method of calculating the fault-tolerant
workspace for a given set of artificial joint limits is discretiz-
ing a half-plane into equal square grids where the normal
of the half-plane is perpendicular to the rotation axis of
the first joint. The fault-tolerant rotation range of the first
joint βx =

[
β
x
, βx

]
is identified for each grid center, and

the positional fault-tolerant workspace can be obtained by
rotating each grid from β

x
to βx.

The fault-tolerant rotation range for each grid center is
given by [

β
x
, βx

]
=

n⋂
i=0

[
β
i
, βi

]
, (1)

where
[
β
i
, βi

]
is the ration range after joint i is locked. The

pre-failure rotation range
[
β
0
, β0

]
is determined by[

β
0
, β0

]
=

[
a1 − θ1, a1 − θ1

]
, (2)

where a1 and a1 are the intersection points of the self-motion
manifolds with C ′

A, which is the CA with the artificial joint
limits on θ1 released. The rotation range after the first joint
is locked, i.e.,

[
β
1
, β1

]
, can be computed by[

β
1
, β1

]
= [a1 −Θ1max, a1 −Θ1min] , (3)

where [Θ1max,Θ1min] denotes the range in Θ1 =⋃
#of SMMs

[θ1min, θ1max] that contains A1. Finally, the rota-

tion range after the other joints are locked, i.e.,
[
β
j
, βj

]
,

j = {2, 3, · · · , n}, is given by[
β
j
, βj

]
= [−π, π] . (4)

III. PREDICTING THE FAULT-TOLERANT WORKSPACE

A. Predicting Fault-Tolerant Rotation Ranges

It can be seen that the computation of the fault-tolerant ro-
tation range βx is very complicated and time consuming. The
proposed method to increase the efficiency of the calculation
of the fault-tolerant workspace utilizes a supervised learning
technique, known as a mixture density network, to learn
the relationship between kinematic parameters of a robot,
artificial joint limits, and the corresponding fault-tolerant
workspace. As the number of fault-tolerant rotation ranges
associated with each workspace location are not necessary
the same, mixture density networks are well-applied to this
problem because they are designed to model one-to-many
relationships.

To apply an mixture density network to this problem,
the parameters of a Gaussian Mixture Model (GMM) are
learned and used to predict βx values within the fault-tolerant

rotation range for an arbitrary workspace location x. The
GMM is sampled using the following equation

β̂x ∼
K∑
k

πk(x)N (µk(x), σ
2
k(x)) (5)

where K represents the number of mixture components in
the GMM, πk(x) represents the probability that β̂x belongs
to the kth mixture component, µk(x) represents the mean
of the kth mixture component, and σ2

k(x) represents the
variance of the kth mixture component. Each of the GMM
components are computed by the MDN as a function of only
the workspace location x assuming the robot’s kinematic
parameters and artificial joint limits are kept constant.

The first step in solving for the fault-tolerant rotation
ranges is sampling N different β̂x values for each workspace
location x. Because several of these samples may be outliers,
a difference filter is then applied to remove these values. The
difference filter is developed as follows. First, the sampled
β̂x values are sorted, and the difference between adjacent
samples is taken as follows

∆β̂x = {β̂(1)
x − β̂(2)

x , . . . , β̂(N−1)
x − β̂(N)

x } (6)

where N is the number of sampled β̂x values, and β̂
(i)
x

represents the ith largest sample. The mean and variance
of these differences are then computed, where these values
are denoted as µ∆ and σ2

∆, respectively. This information
is then used to determine which sampled β̂x values should
be removed. If |∆β̂

(i)

x − µ∆| is greater than α · σ2
∆, where

α > 0 is a filter parameter, then the samples β̂
(i)
x and β̂

(i+1)
x

are both removed. Conceptually, this represents the removal
of outliers, as sampled β̂x values that are much larger or
smaller from the other sampled values are removed. This
process can be repeated as many times as necessary to ensure
the removal of outliers.

Once the outlying samples have been removed, the fault-
tolerant rotation ranges are calculated using the remaining β̂x

samples. The values of ∆β̂x are used to determine this range
using a process similar to the difference filter. Once again,
the mean and variance of ∆β̂x are computed. However,
if |∆β̂

(i)

x − µ∆| is less than γ · σ2
∆, where γ > 0 is not

necessarily equal to α, then β̂
(i)
x and β̂

(i+1)
x are considered

to belong to the same rotational range. The boundaries of the
fault-tolerant rotation ranges are found when this condition is
violated. These boundaries are used to define a set of R fault-
tolerant rotation ranges, denoted

[
β(r)

x
, β

(r)

x

]
for 1 ≤ r ≤ R.

B. Training Mixture Density Networks

To ensure the mixture density network learns the rela-
tionship between kinematic parameters, artificial joint limits,
and the resulting fault-tolerant workspace, many different
combinations of kinematic parameters and artificial joint
limits are used to train the mixture density network. Because
this work considers only planar 3R robots, link lengths are
the only kinematics parameters necessary to describe each
robot’s kinematic structure. Accordingly, the fault-tolerant
workspace shape is based only on the ratio between the link



lengths, so the total sum of the link lengths is kept constant.
The first step in collecting the training data is defining a
robot by a set of random link length ratios. A random set of
artificial joint limits is then defined. Using this combination
of kinematic parameters and artificial joint limits, the fault-
tolerant rotation ranges are computed for a set of workspace
positions along the x-axis. This process is repeated to form
a dataset of different combinations of kinematic parameters
and artificial joint limits and the resulting fault-tolerant
rotation ranges.

After the dataset is created, the mixture density network
is trained on the resulting data. The inputs to the mixture
density network are the robot’s kinematic parameters, its
artificial joint limits, and the workspace position along the
x-axis for which the fault-tolerant rotation range is being
predicted. The outputs of the mixture density network are
K GMM mixture components, πk, µk, and σ2

k, relative to
the input parameters. The mixture density network is trained
using backpropagation to minimize the following negative
log-likelihood error

L(Z,Y) = − 1

N

N∑
i=1

log(p(y(i)|z(i))) (7)

where Z represents the set of input parameters, Y represents
the set of βx values uniformly distributed between the fault-
tolerant rotation ranges of the given workspace location, and
N represents the total size of the dataset. The probability of
y(i) occuring given z(i) is derived from the equation of the
GMM as follows

p(y|z) =
K∑
k

πk(z)√
2πσk(z)

exp

(
−∥y − µk(z)∥2

2σ2
k(z)

)
. (8)

IV. OPTIMIZING ROBOT PARAMETERS AND ARTIFICIAL
JOINT LIMITS

After the above method is developed to efficiently compute
fault-tolerant workspace, the problem of optimizing robot
kinematic structure parameters and artificial joint limits to
maximize the area of the fault-tolerant workspace is studied
in this section. The area of the fault-tolerant workspace can
be computed as follows

AF =
∑
x∈X

R∑
r=1

∥x∥ · ∥β(r)

x − β(r)

x
∥ (9)

where X represents the set of all sampled workspace lo-
cations, ∥x∥ represents the distance from the origin to the
workspace position x, and R represents the total number of
predicted rotational ranges at the given workspace position.
Conceptually, this formula represents the area obtained by
sweeping the grid associated with each workspace location
about the fault-tolerant rotation ranges.

Because this optimization objective is very complicated
and contains many local minima, the best choice of opti-
mization algorithms is a global optimization method such
as a genetic algorithm. To make use of a genetic algorithm,
the concepts of population, fitness, crossover, and mutation

(a) (b)

Fig. 1. The actual (a) and predicted (b) fault-tolerant workspaces of the
planar 3R robot with link lengths of 1.25m, 0.5m, 1.25m and artificial joint
limits of [0◦, 0◦], [−180◦, 180◦], and [−180◦, 180◦] are shown.

must be defined. The population in this work is composed of
combinations of link length ratios and artificial joint limits.
The fitness of each member of the population is defined as
the AF value computed for that specific member. To perform
crossover between link length ratios, the ratios can be added
together, then normalized so their sum is one. To perform
crossover between two sets of artificial joint limits, the new
upper limit of each joint is the average of the two upper
limits of each set of joint limits for that joint, and likewise
for the lower limits. For the link length ratios, mutation is
performed by adding some noise to the link length ratios and
normalizing as described above. To mutate a set of artificial
joint limits, one of the joints is chosen at random and its
artificial joint limits are randomized, making sure to keep
the upper joint limit larger than the lower limit.

V. RESULTS

To validate the ability of the proposed method to produce
accurate fault-tolerant workspaces, the fault-tolerant rotation
ranges of 150 planar 3R robots, which is a reasonable size
for a training dataset, with random link length ratios and
constant artificial joint limits of [0◦, 0◦], [−180◦, 180◦], and
[−180◦, 180◦] were used to create the training dataset. Be-
cause this work focuses on planar 3R robots, the workspace
grid is simply the x-axis. Once the mixture density network
was trained on this dataset, its performance was analyzed
by using it to predict the fault-tolerant workspace of the
planar 3R robot with the above artificial joint limits and link
lengths of 1.25m, 0.5m, 1.25m. The actual and predicted
fault-tolerant workspaces are shown in Fig. 1, where the
predicted fault-tolerant workspace is very similar in shape
to the actual fault-tolerant workspace. The computational
time required to compute the actual fault-tolerant workspace
was roughly 60 seconds, while the proposed method required
only 0.67 seconds.

The proposed method is also used to compute AF as a
part of the fault-tolerance optimization process described in
Section IV. After being trained on the above dataset, the
mixture density network is used to determine the fitness
of a set of robots with a randomly generated link length
ratios and the same artificial joint limits as the previous
example. Because the mixture density network is used during
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Fig. 2. The comparison of the fault-tolerant and fault-intolerant trajectories
is shown. For the horizontal trajectory within the fault-tolerant workspace,
the robot is able to complete the trajectory despite failures of joint 2 in (a),
joint 4 in (b), and joint 6 in (c). For the vertical trajectory outside of the
fault-tolerant workspace, the robot is still able to complete the task is given
a failure of joint 6 in (f), but is not able to complete the trajectory given
failures of joint 2 in (d) and joint 4 in (e).

each iteration of the genetic algorithm, its computational
efficiency greatly impacts the speed of the optimization
process. With a population size of 100 robots, a single
iteration of the genetic algorithm using the mixture density
network takes 20.45 seconds, while it takes roughly 6000
seconds to calculate the area of the fault-tolerant workspace
for all of these robots using the method from [10]. The final
output of the genetic algorithm is a robot with link lengths of
1.15m, 0.5m, and 1.35m. The first and last links are just 0.1m
shorter and longer, respectively, than the analytically-derived
solution found in [8] with the given artificial joint limits.
This example demonstrates the efficiency and accuracy of
the proposed method.

The proposed method is finally validated by placing a tra-
jectory inside of the predicted fault-tolerant workspace, plac-
ing another trajectory outside of the fault-tolerant workspace,
and demonstrating that the trajectory inside the fault-tolerant
workspace is achievable after an arbitrary joint failure, while
the other trajectory is not guaranteed to be achievable. This
experiment is performed using the 7 DOFs Kinova Gen3
robot arm with joints 1, 3, 5, and 7 locked, which reduces
the arm to a planar 3R robot. The proposed optimization
method is used to find the optimal the artificial joint limits
which maximize the fault-tolerant workspace. The produced
artificial joint limits are [−30◦, 30◦], [−100◦, 100◦], and
[−100◦, 100◦]. Once the fault-tolerant workspace is com-
puted, a trajectory is placed inside of it as shown by the
green points in Fig. 2(a)-2(c). It can be seen that the robot is
able to complete the entire trajectory after joint 2 is locked

in Fig. 2(a), joint 4 is locked in Fig. 2(b), joint 6 is locked
in Fig. 2(c). By contrast, a trajectory is placed outside of
the fault-tolerant workspace, as shown by the green points
in Fig. 2(d)-2(f). Although the task is completed when joint
6 is locked in Fig. 2(f), the task fails when joint 2 is locked
in Fig. 2(d) and when joint 4 is locked in Fig. 2(e).

VI. CONCLUSION

This paper studies the problems of efficiently computing
fault-tolerant workspace and identifying the optimal robot
kinematic structure parameters and artificial joint limits to
maximize the area of the fault-tolerant workspace. It shows
that mixture density networks can accurately and efficiently
predict the fault-tolerant workspace of planar 3R robots.
Therefore, this method can be applied to optimize the
artificial joint limits and link lengths of planar 3R robots,
which results in an optimal robot with link lengths of 1.15m,
0.5m, and 1.35m for the artificial joint limits of [0◦, 0◦],
[−180◦, 180◦], and [−180◦, 180◦]. In experiments, a trajec-
tory is placed inside the predicted fault-tolerant workspace,
and the robot is able to complete the task for an arbitrary
joint failure. The proposed method is a general method
that can be applied to robots with many DOFs working in
high dimensional workspaces and experiencing multiple joint
failures.
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