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Abstract— Classical planning systems have shown great ad-
vances in utilizing rule-based human knowledge to compute
accurate plans for service robots, but they face challenges
due to the strong assumptions of perfect perception and
action executions. To tackle these challenges, one solution
is to connect the symbolic states and actions generated by
classical planners to the robot’s sensory observations, thus
closing the perception-action loop. This research proposes a
visually-grounded planning framework, named TPVQA, which
leverages Vision-Language Models (VLMs) to detect action fail-
ures and verify action affordances towards enabling successful
plan execution. Results from quantitative experiments show that
TPVQA surpasses competitive baselines from previous studies
in task completion rate.

I. INTRODUCTION

Classical planning frameworks such as those defined by
Planning Domain Definition Language (PDDL) and An-
swer Set Programming (ASP) have been extensively utilized
in planning and reasoning robot actions for long-horizon
tasks [1]. Those classical planning systems are good at
leveraging rule-based human knowledge to compute correct
plans but suffer from the strong assumptions of perfect
perception and action executions. For example, if the world
model includes an apple on a table, classical planners assume
that the robot will always locate the apple after reaching the
table’s location, and picking up the apple will deterministi-
cally result in it being in the robot’s hand. These assumptions
fail to consider dynamically changing environments and
uncertain action outcomes, rendering it impractical for the
robot to complete tasks by simply following computed plans
in the real world.

To enable successful plan executions, classical planning
systems are frequently accompanied by a plan monitoring
system for linking the symbolic states and actions to robot
sensory observations, where significant engineering efforts
are needed. Fig. [I| illustrates the role of a plan monitor-
ing system. Given the natural connection between planning
symbols and human language, this paper investigates how
pre-trained Vision-Language Models (VLMs) can assist the
robot in realizing symbolic plans generated by classical plan-
ners, while avoiding the engineering efforts of checking the
outcomes of each action. Specifically, we propose a vision-
based symbolic planning framework, called TPVQA, that
leverages VLMs to detect action failures and verify action
affordances towards successful plan execution (Fig. ). We
take the advantage of the domain knowledge encoded in clas-
sical planners, including the actions defined by their effects
and preconditions. By simply querying current observations
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Action: collect (toy_eggplant, container)

Bl lcollcct . Was the action successful?
toy_eggplant using container?

No, because (1) the toy_eggplant
is on the table, and (2) the

container is empty.

Yes, because (1) there is a
container, and (2) a toy_eggplant
is currently in the robot’s hand.

Fig. 1: To monitor plan executions on robots, it is required to
answer the following questions: 1) “Is it feasible to perform
a particular action in the current state of the world?” and
2) “Was the action successfully executed, resulting in world
transitions to the desired state?”

against the action knowledge, similar to applying VLMs
to Visual Question Answering (VQA) tasks, TPVQA can
trigger the robot to repeat an unsuccessful action or call the
symbolic planner to generate a new valid plan.

We conducted quantitative evaluations of TPVQA on an
image dataset that consists of 20% realistic photos taken from
home environments. The remaining images are augmented
using diffusion models [2]. Experimental results demonstrate
that TPVQA outperforms competitive baselines from the
literature, achieving the highest task completion rate. Further-
more, we present an illustrative trial of deploying TPVQA on
real robot hardware to perform object rearrangement tasks.

II. RELATED WORK
A. Robot Planning with Classical Planners

Classical planning algorithms have found widespread ap-
plication in robot systems. Recent classical planning systems
designed for robotics commonly employ Planning Domain
Description Language (PDDL) or Answer Set Programming
(ASP) as the underlying action language for planners [3],
[4], [5], [6]. Researchers have utilized classical planning
algorithms for various robotic applications, including se-
quencing actions for a mobile robot on delivery tasks [7],
reasoning about safe and efficient urban driving behaviors
for autonomous vehicles [8], planning actions for a team
of mobile robots [9], and completing service tasks in open-
world scenarios [10]. Task and Motion Planning (TAMP),
a hierarchical planning framework that combines classical
planning in discrete spaces and robot motion planning in
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Fig. 2: Overview of TPVQA. By simply querying the robot’s current observation against the action knowledge (i.e., effects
and preconditions) as Visual Question Answering (VQA) tasks, TPVQA can trigger the robot to repeat an unsuccessful
action, or call the classical planner to generate a new valid plan using an updated world state.

continuous space, has also shown great advances in robot
long-horizon planning [11], [12]. Most classical planning
algorithms that are designed for robot planning do not
consider perception. Though some recent works have already
shown that training vision-based models from robot sensory
data can be effective in plan feasibility evaluation [13], [14],
[15], [16], [17], [18], their methods did not tightly bond
with language symbols which are the state representations for
classical planning systems. We, on the other hand, propose
TPVQA that uses VLMs to connect language (in classical
planner) to robot perception.

B. Pre-trained Vision-Language Models in Robotics

Existing research has shown that large Vision-Language
Models like CLIP [19] can be used in the robotics domain
such as semantic scene understanding [20], effective open-
ended agent learning [21], guiding robot navigation [22] and
manipulation behaviors [23], [24]. Two recent works that
are the most related to us are SuccessVQA [25] and PaLM-
E [26]. SuccessVQA has investigated how VLMs enable
robots to detect action outcomes and model action rewards.
They also treat success/failure detections as VQA tasks, but
did not consider affordances before action execution. PaLM-
E is a large embodied VLM that is trained to predict robot
action sequences as well as solve other downstream vision-
language tasks. PaLM-E has demonstrated its effectiveness
in both failure detection and affordance prediction. Differ-
ent from their work, TPVQA uses classical planners for
generating symbolic plans instead of solely relying on pre-
trained models. That is because classical planning techniques
are designed to ensure the generated plans are sound and
complete. In addition, all the works that are listed in this
section require additional training or fine-tuning VLMs in
specific domains, but we study if and to what extent existing
VLMs can help robot planning.

III. BACKGROUND

In this section, we briefly summarize basic concepts in
classical planning and Vision-Language Models, which serve

as the two main building blocks of this research.

A. The Classical Planning Problem

Formally, the input of a planning problem P is defined
by a tuple (S,s™" SC A, f). S is a finite and discrete set of
states used to describe the world’s state (i.e., state space).
We assume a factored state space such that each state s € S
is defined by the values of a fixed set of variables. s € §
is an initial world state. S¢ C S is a set of goal states. SO are
usually specified as a list of goal conditions, all of which
must hold in a goal state. A is a set of symbolic actions.
Actions are defined by their preconditions and effects. f
is the underlying state transition function. State transitions
are usually deterministic in classical planning problems but
are not in real-world scenarios. A solution to a classical
planning problem P is a symbolic plan 7 in the form of
(ay,az,...,ay), such that the preconditions of a; hold in
st the preconditions of a; hold in the state that results
from applying a;, and so on, with the goal conditions all
holding in the state that results after applying ay.

B. Vision-Language Models for VQA Tasks

A general definition for VLMs is that they are models
that combine both vision and language modalities. Most
VLMs require encoders for both vision and language so
as to train joint feature embeddings. One typical training
strategy is by using Contrastive Learning [27]. Pre-trained
VLMs have shown impressive capabilities in downstream
tasks such as image captioning [28], open-vocabulary object
detection [29], and visual question answering [30]. In this
work, we relate robot actions with VQA queries for ground-
ing long-horizon planning. We use the VILBERT model [31]
pre-trained on the VQA v2.0 dataset [32] which is publicly
available in the AllenNLP platform [33].

IV. METHOD

This section presents our main contribution, TPVQA, that
leverages VLMs to detect action failures and verify action
affordances for enabling successful plan executions.



A. Precondition Checking for Re-planning

Before every action execution, TPVQA extracts knowl-
edge about action preconditions from the planner’s domain
description. For instance, action place_on (A, B) has
preconditions of in_hand (A) and near (B), meaning that
to place an object A on top of object B, the robot should
first grasp A in hand and be located near object B. Then,
we simply convert each action precondition into a natural
language query by using some manually defined templates,
such as “Is object A in a robot’s hand?” and “Is there
an object B in the image?” Paring each natural language
query with the current observation from the robot’s first-
person view, we call the VLM to get answers indicating if
the precondition is satisfied.

According to the results from the VLM, TPVQA will
update the current state information in the classical planning
system. Fig. [2] shows an example where the robot wants to
wash (plate) but fails to detect “plate in a robot’s hand”
given the current image. Because the classical planner always
assumes perfect action executions, it will incorrectly believe
all previous actions are successful and the current world
state includes in_hand (plate). As a result, TPVQA will
update the current state by removing in_hand (plate).
We provide the updated world state to the planner as the
“new” initial state to re-generate a plan. In the above
example, instead of wash (plate), the robot will now take
the action of goto (table) as it believes there is a plate
on the table (according to the domain knowledge provided
in the planning problem description).

B. Effect Monitoring for Re-execution

After every action execution, TPVQA extracts knowledge

about action effects from the planner’s domain description.
Similar to how TPVQA asks about preconditions, it queries
action effects by using the VLM. If the effects are not
satisfied, the robot will repeat the same action until it gets
positive feedback from the VLM so as to continue the next
action. Note that before re-trying each action, the robot will
also need to check preconditions, because action failures
frequently cause some preconditions to break in the real
world. For example, failing to place an apple on the table
might result in the apple falling to the ground, instead of still
being in the robot’s hand.
Remarks: A single action is usually defined by multiple
preconditions and effects. VLMs, especially for those that
are not trained using domain-specific data, frequently pro-
duce inaccurate answers that cause disagreements among
the given preconditions (or effects). For instance, the VLM
might answer “Yes” to both on (apple, table) and
in_hand (apple) after the robot picks up an apple from
the table. In this paper, we query the VLM about all the listed
effects (preconditions), and determine to re-execute (re-plan)
if the majority of them are not satisfied.

V. EXPERIMENTS

We conduct extensive experiments to evaluate the per-
formance of TPVQA comparing with baselines from the
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(a) Find bread (fail) (b) Find bread (c) Pick up bread (fail) (d) Pick up bread

(e) Find plate

(f) Place bread on plate (g) Find TV (h) Turn on TV

Fig. 3: An example trial for “serve_breakfast” task sampled
from the simulator.

literature. Our hypothesis is that TPVQA produces the
highest task completion rate because of its effectiveness
in plan monitoring and online re-planning using percep-
tion. In the experiment, we consider three everyday tasks
that are “clean_dishes”, “serve_breakfast”, and “eat_apple”.
Task descriptions are constructed using PDDL and symbolic
plans are generated using the FAST-DOWNWARD plannerﬂ
as shown in TABLE [l

clean_dishes serve_breakfast eat_apple

Step 1: Find plate
Step 2: Pick up plate
Step 3: Find sink
Step 4: Wash plate

Step 1: Find bread

Step 2: Pick up bread

Step 3: Find plate

Step 4: Place bread on plate
Step 5: Find TV

Step 6: Turn on TV

Step 1: Find fridge

Step 2: Open fridge

Step 3: Find apple

Step 4: Pick up apple
Step 5: Find knife

Step 6: Pick up knife

Step 6: Cut into half apple

TABLE I: Symbolic plans computed for the tasks.

A. Simulator with Diffusion Models

To quantitatively evaluate the performance of TPVQA in
dealing with imperfect perception and uncertain action out-
comes, we build a simulator using web-scale diffusion mod-
els. We first took images from real environments and use the
image variation API provided by DALL-E [2] to augment the
original dataset. For a small portion of the actions for which
real photos are difficult to get, such as a robot washing a
plate, we manually design prompts as inputs to DALL-E.
Each action is paired with 10 successful observations and
10 failed ones. Overall, our image dataset consists of 20%
real photos, 60% images from real photo variations, and 20%
images directly generated from text prompts. Fig. [3] shows
example images from our dataset.

At each time step, an observation for the current action
is sampled from the dataset. We assume that there is a
probability of 25% that an action may fail which will result
in a failed action observation. We also assume there is
another 25% chance that a failed action may cause changes
to previous states. For instance, when the robot fails on the
action cutintohalf (apple), there is a chance that the
apple (or the knife) is not in the robot’s hand anymore. To
model this uncertainty, we re-sample one of the previous

ISee https://www.fast-downward.orq/ for the details on the
FAST-DOWNWARD software. We use the implementation from https://
github.com/aibasel/downward,
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Fig. 4: Task completion rates of TPVQA and four baselines
evaluated over three tasks.

observations to let the robot estimate the current world state.
The robot needs to successfully execute all the actions so as
to complete the task, leading the system to the desired goal
state.

B. Baselines

TPVQA is compared with the following four baselines:

« EffectVQA: An ablative version of ours where VLMs
are only used for action effect monitoring.

o TP: A task planning baseline without perception.

« PaALMEVQA: PaLM-E [26] is robust to most of the
vision-language downstream tasks. Among those, we
are more interested in affordance prediction and failure
detection. To this end, PALMEVQA is a baseline that is
designed with prompts provided in the original PaLM-
E paper, which are “Is it possible to <action> here?”
and “Was <action> successful?”

o SuccessVQA [25]: We use the same query provided
in their paper, which is “Did the robot successfully
<action>?" SuccessVQA does not consider affordance.

Note that neither PaALM-E nor Flamingo [34] (as used in
the original SuccessVQA paper) is open-sourced, so we
use the same VLM as ours [31] for implementing their
corresponding baselines. As discussed in Section [[I-B] both
PaLLM-E and SuccessVQA are trained on robotics data, but
all evaluations in this paper do not involve any altering for
the VLM itself.

C. Results

Fig. [ presents the main experimental results. We observe
that TPVQA consistently outperforms baselines in task com-
pletion rate, which supports our hypothesis. As the number of
required action steps of tasks increases, the success rates of
all the methods decrease as expected. By considering action
knowledge (i.e., preconditions and effects), TPVQA and
EffectVQA are significantly better than others, especially
the ones (PaLMEVQA and SuccessVQA) that only query
about actions by their names. We can also tell that methods
additionally considering action affordances (TPVQA and
PaLMEVQA) perform better than the methods that only
detect action failures (EffectVQA and SuccessVQA).

Another interesting finding is that TP, a baseline that does
not include any perception, produces a higher success rate
than PALMEVQA and SuccessVQA, which are two other
baselines that are capable of interacting with VLMs. That is

Accuracy

Query

clean_dishes  serve_breakfast  eat_apple
Action Pres. 0.63 0.53 0.70
Is <action> possible? 0.58 0.33 0.43
Action Effs. 0.79 0.60 0.71
Was <action> successful? 0.45 0.30 0.47

TABLE II: VQA accuracies on different querying strategies.

because false positives and false negatives from VLMs will
greatly impact the plan execution, easily leading the robot
to failure cases. TABLE [[] shows that when querying about
action knowledge, the VLM is more accurate in failure de-
tection and affordance prediction. If directly querying about
action names, prediction accuracies for most of the actions
are lower than a random guess, which is why SuccessVQA
and PALMEVQA perform poorly. A straightforward example
is when detecting if the robot has successfully washed
the plate, instead of asking “Was wash plate successful?”,
TPVQA will query “Is the plate clean?”. We observe that the
latter type of queries (ours) is easier for VLMs to understand.

D. Real-Robot Deployment

We also deployed TPVQA on real robot hardware to
perform object rearrangement tasks (Fig. [5), where the goal
is to “collect” toys using a container and place them in the
red area. Our real-robot setup includes a URSe Arm with a
Hand-E gripper mounted on a Segway base, and an overhead
RGB-D camera (relatively fixed to the robot) for perception.
Please refer to Appendix for more details.
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Fig. 5: Real robot demonstration for TPVQA.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate robot classical planning
with pre-trained VLMs. We propose TPVQA that triggers
re-planning using precondition checking and re-execution
using effect monitoring. By doing a set of experiments
on robots working on everyday tasks, we demonstrate that
TPVQA is able to provide more successful plan executions
than baselines. For future work, we would like to evaluate
our method using more tasks, potentially those from existing
benchmarks such as ActivityPrograms [35]. In addition to
using images generated by diffusion models for evaluation,
it might be possible to use datasets such as EGO4D [36].
To improve the overall task completion rate, one way is to
collect task-specific data and finetune the pre-trained model.
It will be also interesting to develop methods that can handle
inconsistent inferences from VLMs.
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(g) Pick up toy_eggplant (fail)

(h) Repeat. Pick up toy_eggplant

(i) Collect toy_eggplant with container

Fig. 6: Screenshots showing the full demonstration trial of TPVQA as applied to a real robot.

APPENDIX

Fig. [f] shows a sequence of screenshots of a real robot
using TPVQA on object rearrangement tasks. The goal is
to “collect” toys using a container and place them in the
middle of the table (i.e., goal area). We assume that the robot
has a predefined set of skills, including pick, place, and
find.Pick and place actions are implemented using GG-
CNN [37], and find action simply uses base rotation for
capturing tabletop images from different angles.

Given the task description, the robot first decided to exe-
cute “find container” and “pick up container”. These two ac-
tions were successfully executed as shown in Fig. [f[a), [f[b).
When the robot was preparing the next action (i.e., “Place
container into the goal area”), the blue container accidentally
dropped from the robot’s gripper to the ground (Fig. [6{c)).
Instead of directly executing the next action, TPVQA enabled
the robot to check preconditions by querying the VLM “Is
the container in a robot’s hand?” After receiving negative
feedback from the VLM, TPVQA updated the world state by
removing in_hand (container) and called the planner
to generate a new plan that started the task again by finding

another container (Fig. [[d)). Then the robot picked up the
cyan container and placed it in the middle of the table
as shown in Fig. [6fe), [[f). The subsequent actions in the
plan were to find and pick up a toy, but the pick action
failed (Fig. Ekg)). TPVQA managed to detect the failure by
querying 1) “Is there a toy_eggplant on the table?”, and
2) “Is the toy_eggplant in a robot’s hand?”, and receiving
Yes and No answers respectively. As a result, our system
suggested the robot repeat the pick action again (Fig. [6(h)).
Finally, the robot successfully collected the toy by putting
it into the cyan container that was previously placed in the

goal area (Fig. [6(1)).
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