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Abstract— Autonomous robots are increasingly improving at
performing a navigation task, however they will likely fail at
some point or not perform as intended due to uncertainties
or unforeseen situations in the real world. In such scenarios,
explaining the robot’s behavior to humans is crucial to build
trust and resolve potential issues. Recently, large language
models (LLMs) have shown great potential in analyzing robot
log data, e.g., obtained in ROS, and providing users with
useful explanations. Yet, these models can often not consistently
generate answers with high quality. In this study, we investigate
the use of parameter-efficient fine-tuning (PEFT) to improve
the explanations generated by LLMs. We use commercially
available ROS navigation stacks for a TIAGo robot and
present a fine-tuning framework for ROS log messages. Our
preliminary results with state-of-the-art LLMs show promising
improvement after fine-tuning to explain failures in navigation
tasks. We are planning to conduct a user study to investigate
the extent to which fine-tuning can lead to higher consistency
and quality in explanations.

I. INTRODUCTION

As robots become increasingly integrated into our daily
lives, and we encounter robot failures more frequently,
the importance of explainability in human-robot interaction
(HRI) becomes evident. Explainability fosters understanding
between the user and a robot, contributing to building a
trustworthy relationship between humans and robots. One
effective approach is generating explanations that improve
the user’s understanding about the behavior of the robot and
why failures may have occurred.

Consider a simple navigation task, as shown in Figure
1 where a TIAGo robot is instructed to move along three
waypoints while avoiding obstacles. TIAGo reaches way-
points 1 and 2, but not waypoint 3 and no path is shown
towards this waypoint. Explainability systems aim to provide
explanations for this. Ideally, such systems should provide
answers to questions such as “Is there a feasible path to
waypoint 3?7, and "Why is there no feasible path possible?”.
In this situation, a path towards waypoint 3 is not feasible
because it is located within a known obstacle.

While the literature lacks consensus on the precise defi-
nition of the concept of explainability [1], [2], there is an
agreement that it relates to interpretability and transparency
[31, [4]. In the context of HRI, explainability aims to improve
the user’s understanding of the robot through clear and
truthful explanations that align with the robot’s logic [5].
Explanations are also viewed as answers to “why” questions
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Fig. 1. Simple navigation task with three waypoints that our simulated
TIAGo needs to reach. However, it fails to reach waypoint three, since
there is an obstacle.

[5], and as an interaction between a human and a robot [6].
Most robots operate using the open-source Robot Operating
System (ROS) framework that utilizes nodes to transmit data
through topics. ROS also produces textual log messages in
the /rosout topic that give insights to the inner workings of
the robot, which are comparable between different robots.

This study utilizes ROS log messages produced by the
robot during navigation tasks to ground explanations, ensur-
ing they reflect the robot’s logic. We will enhance the logs
produced by ROS 1 by adding clearly defined custom log
messages to increase the verbosity of the recorded log data.

To generate interactive and understandable explanations
for users, we propose leveraging LLMs. These models are
useful for interpreting extensive textual data such as ROS log
messages due to their advanced natural language processing
capabilities. This enables LLMs to provide understandable
answers for questions about robot behavior [7], [8]. However,
LLMs alone have limitations, such as hallucinations or pro-
viding answers in an undesired format [9]. To mitigate these
limitations, we intend to adjust the LLMs weights by fine-
tuning [10] these models on a dataset containing examples
of question-answer pairs based on ROS log messages.

The purpose of the fine-tuned LLM is to interpret new
ROS log messages and, based on this data, generate useful
answers to users’ questions. Based on this approach, this
work focuses on answering the following research question:

How can fine-tuning be used to generate useful ex-
planations to improve explainability of autonomous
robots’ behavior?
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Fig. 2.

The structure of this paper is as follows: Section II
presents a comprehensive review of related works. Section
IIT details the method used to fine-tune the LLM for gener-
ating explanations using ROS log data. Section IV describes
the implementation of this method. Section V displays the
preliminary results collected so far.

II. RELATED WORK

This section briefly summarizes previous studies on robot
explainability that leverage ROS log messages.

A study [12] uses an algorithm with if and else statements
designed to read messages from specified topics and extract
relevant information to generate simple natural language ex-
planations for a navigation task. This method addresses two
specific user questions, “"What is the robot’s current status?”
and "Why have you changed the path?”. For example, for the
first question the algorithm compares the previous_goal_id
with the current_goal_id and if these are different it returns
”Navigation to a new goal has started”. For the second ques-
tion, if the distance from the goal location increases above a
threshold and an obstacle is located within a threshold, the
algorithm prints I have changed the planned path because
there was an obstacle”. While it answers relevant questions
for a navigation task, it limits user understanding to these
questions and provides brief answers.

Another approach [8] employs LLMs to interpret ROS log
messages, enhancing explainability. This approach involves
splitting Rosbag files, containing ROS log messages, to fit
the LLM’s prompt size requirement and using basic prompt
engineering to guide the LLM in generating relevant explana-
tions. Specifically, this study utilizes single-shot prompting,
where the LLM is provided with a single example to generate
a similar response. The advantage of this approach is that by
using LLMs, users can ask any question about the robot’s
behavior, instead of being limited to two predefined ques-
tions. Additionally, the responses to the questions contain
greater depth and more context, which is provided by the
LLMs natural language processing capabilities. However, the
study does identify limitations concerning the quality and
consistency of the log analysis.

Another study [11] introduces an explanation system using
an LLM with Retrieval Augmented Generation (RAG) to
interpret ROS log messages, as shown in Figure 2. Collected

RELEVANT
DOCUMENTS || ——> ‘

USER

QUESTION
PROMPT

‘ TEMPLATE

RELEVANT
DOCUMENTS

LLM INPUT

Overview of the Retrieval Augmented Generation framework [11]

ROS log data is stored in a vector database. Based on the pro-
vided user question, the RAG system retrieves relevant ROS
log data to provide a broader context for LLM’s response.
The amount of provided contextual data is limited by the
prompt size of the used LLM. The process involves forming
a prompt for the LLM using the user question, a predefined
prompt template, and the retrieved relevant ROS log data,
which then produces the answer to the user question. The
advantage of this method is that it retrieves relevant examples
for the LLM, as an LLM aligns its response to the given
context. Although, the amount of relevant context that can
be provided and the quality of the retrieval system can limit
the generated output.

Both studies [8], [11] build on [12], demonstrating the
potential of combining LLMs with prompt engineering and
RAG to interpret ROS log messages to provide comprehen-
sible explanations to user questions. These studies highlight
the potential of integrating LLMs for explanation generation
based on ROS log data to enhance robot explainability.
While current methods offer promising solutions for this
problem, a new avenue that has yet to be investigated is
fine-tuning. Fine-tuning involves adapting existing LLMs to
specific tasks, in this case answering user questions based
on provided ROS log messages, significantly improving the
quality of the LLM responses. This method addresses the
limitations of previous work, by eliminating constraints re-
lated to the maximum prompt size of an LLM and the quality
of the retrieval system. Instead of relying on prompt engi-
neering, the LLM is retrained on a comprehensive dataset
that contains ROS log messages and corresponding question-
answer pairs. This retraining process allows the LLM to
better understand the context of the data for this specific
task, leading to more accurate and relevant answers. Fine-
tuning ensures that the LLM can leverage the entire dataset
for generating responses, thereby providing richer and more
precise explanations tailored to specific queries. Therefore,
we will explore fine-tuning techniques to analyze ROS log
data and generate answers to users’ questions. I think

III. METHOD

The type of fine-tuning we intend to investigate is
Parameter-Efficient Fine-Tuning (PEFT) to generate expla-
nations based on the ROS log data. This section outlines the
advantages of PEFT compared to traditional full fine-tuning.
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The application of fine-tuning techniques to LLMs rep-
resents a significant advancement, enabling the customiza-
tion of these models for a specific task [10], in this case
question answering based on ROS log messages. Fine-tuning
involves retraining an LLM using a dataset containing useful
examples to optimize its performance for this task. There
are various fine-tuning approaches. The most comprehensive
fine-tuning approach is full fine-tuning, where the entire
model is retrained, adjusting all its parameters to better
suit the new dataset [13]. However, this approach is highly
resource-intensive and time-consuming.

For ROS log interpretation tasks, a dataset of Rosbag files
containing ROS log messages is required for fine-tuning.
Given that such a dataset is not readily available online, it
must be collected, limiting its volume. For this application,
we propose using Parameter-Efficient Fine-Tuning (PEFT)
as it involves selectively adjusting a small subset of the
LLM’s parameters while leaving the majority unchanged
[14], examples of PEFT techniques are shown in Figure 3.
This targeted approach significantly reduces computational
costs and the amount of fine-tuning data required compared
to full fine-tuning, which retrains the entire model. The
study by [15] indicates that PEFT outperforms traditional
full fine-tuning, especially in limited-data scenarios, while
offering benefits such as reduced memory and computational
demands. Further research shows that increasing the model
size enhances parameter-efficient fine-tuning outcomes more
significantly than enlarging the pretraining or fine-tuning
datasets [13], [14]. Employing large-scale LLMs with ef-
ficient fine-tuning practices like PEFT maximizes perfor-
mance, making it highly relevant for tasks with constrained
data and computational resources, such as those in ROS log
interpretation tasks.

PEFT focuses on modifying critical parameters or layers
within the model, such as the final layers, adapter modules, or
specific attention heads, which are most relevant to the task
at hand [14]. This method leverages the existing knowledge
encoded in the pretrained model, allowing it to adapt to new
tasks with minimal adjustments. By concentrating on key
parameters, PEFT can achieve comparable performance to
full fine-tuning while being both, computationally and data
efficient [16], [17].

Low-Rank Adaptation (LoRA) [18] is a reparametrization
PEFT technique that demonstrates potential in customiz-
ing LLMs for targeted tasks like automated code genera-
tion, while efficiently managing computational load [15].

LoRA optimizes rank decomposition matrices of dense layer
changes during adaptation while keeping pre-trained weights
frozen, achieving efficiency in storage and computation even
with low rank [18]. In addition, a study [19] evaluates
LoRA using datasets containing 1,000 examples to give an
indication of the required size of a dataset. Therefore, we
propose to utilize LoRA to fine-tune a LLM with a dataset
of 900 examples to tailor it to answering user questions based
on a robot’s ROS log messages.

IV. EXPERIMENTAL SETUP

The goal of the proposed experiments is to evaluate the
performance of PEFT and the quality of the explanations it
generates. This section details the collection, pre-processing,
and utilization of fine-tuning data for PEFT. Additionally,
the testing conditions and evaluation methods used to assess
the effectiveness of PEFT in generating useful explanations
are discussed.

A. Collecting ROS log data

We collect Rosbag files containing ROS log messages
with TIAGo in simulation using the standard software stack
provided by PAL Robotics, that is tasked to move along
waypoints:

e Scenario 1: with known obstacles, and all paths are
feasible.

« Scenario 2: with unknown obstacles in its path, yet all
paths are feasible.

« Scenario 3: with known obstacles, yet not all paths are
feasible. As shown in Figure 1.

« Scenario 4: with unknown obstacles in its path, and not
all paths are feasible.

e Scenario 5: with no unknown obstacles, but at least one
of the paths goes out of bounds.

In these scenarios, known obstacles refer to obstacles that
are present in the costmap the robot uses to plan its paths
and unknown obstacles are not. For each scenario, small
variations are induced, such as in the number of waypoints
and waypoint positions, resulting in the collection of a
total of 75 Rosbag files containing the ROS log messages
produced by the /rosout topic. The Rosbag starts recording
simultaneously with the initialization of the navigation task
to minimize the presence of irrelevant ROS log messages.

B. Pre-processing data

We label each Rosbag file with multiple questions and cor-
responding answers, resulting in 900 data instances contain-
ing a Rosbag file, a question and an answer. The questions
used in our research are a combination of those from the
work by Sobrin-Hidalgo et al. [11] and additional ones we
propose, shown in Appendix 1.

These questions are included in the fine-tuning data, and
the answers for each of these questions related to a Rosbag
file are generated using OpenAI’s GPT-40. For 900 answers,
we deemed it more practical to generate these using GPT-
40 instead of manually, as this is time-consuming and LLMs
such as GPT-40 have excellent capabilities to generate useful



explanations with the right prompt. The prompt used for
this data generation is shown in Appendix II employs the
prompting principles detailed in [20]. Together, these 900
instances containing a Rosbag file, a question and an answer
make up the fine-tuning data.

C. Parameter-Efficient Fine-Tuning

The Parameter-Efficient Fine-Tuning is carried out using
the collected dataset composed of ROS logs, user questions
and corresponding answers on two LLMs: GPT-3.5 and an
open-source model Mistral 8x7B. These two models were
selected due to their size and performance.

D. Testing

We conduct four different tests using the two fine-tuned
LLMs and the two original LLMs. Each test will be evaluated
using an existing Rosbag file from a previous study by
Sobrin-Hidalgo et al. [11], and Rosbag files collected from
the physical TIAGo robot, both performing navigation tasks.

E. Evaluation

We evaluate the fine-tuned LLM using a combination
of objective metrics and a subjective questionnaire. The
set of metrics aims to quantify the system’s performance,
and a questionnaire assesses the quality of the generated
explanations.

The proposed metrics are adapted from [11] for a PEFT
application:

o M1: Number of messages published in the Rosbag file.

e M2: Answer generation time (s)

M1 gives an indication of the size and complexity of the
Rosbag file that is being interpreted. M2 refers to the time
taken to generate an explanation for the fine-tuned model.
The hardware we will use to conduct the final experiments
is still to be decided.

Additionally, we will use a questionnaire developed by
[11] to assess the quality of the explanations generated by
the fine-tuned LLM. This questionnaire, targeted towards
roboticists, evaluates the explanations based on six criteria
adapted from the same study given the ROS log messages.
Roboticists with prior knowledge of ROS log messages are
best suited to make this evaluation because they possess
the necessary understanding to provide a well-grounded
assessment. These criteria, as shown in Table II in Appendix
III, focus on user expectation and satisfaction and are scored
using a 5-point Likert scale.

This evaluation aims to validate the potential of the
proposed method by providing an assessment of the quality
and reliability of the produced explanations. Furthermore,
it can be used to compare with the evaluation of the RAG
method proposed by [11].

V. PRELIMINARY RESULTS

This section presents preliminary results of this study,
showcasing the responses provided by GPT-3.5-turbo before
and after it is fully fine-tuned using the OpenAl API. The
aim of these results is to show the improvement in responses

through fine-tuning LLMs using the collected data. The next
step in the research is to implement and test PEFT.

The preliminary results show the response of the LLM
based on new ROS log messages recorded during a naviga-
tion task of scenario 3 with 3 waypoints, as shown in Figure
1. A simplified version of the ROS log messages is given
below:

Navigating to waypoint 1...

Reached waypoint 1

Navigating to waypoint 2...

Reached waypoint 2

Navigating to waypoint 3...

Failed to get a plan.

Rotate recovery behavior started.

Aborting because a valid plan could
not be found. Even after
executing all recovery
behaviors.

Failed to reach waypoint 3

The full ROS log messages recorded in the Rosbag are
shown in Appendix IV.

An overview of the answers generated by GPT-3.5 before
and after fine-tuning is shown in Table III and Table IV
respectively in Appendix V. These results show how fine-
tuning using the collected data has improved the explanations
provided by the LLM. The fine-tuned LLM provides answers
in an improved format, as shown in the responses to question
1, 2 and 10. Additionally, it provides clearer references
to the log messages provided to ground its explanations,
demonstrated in the responses to questions 4 to 7. The
combination of these improved qualities show the potential of
fine-tuning and we look forward to continuing this research
by testing PEFT.

VI. CONCLUSIONS

In this research. we explore the potential of PEFT to
interpret textual ROS log messages and generate useful
explanations for robot behaviors. Our preliminary results
demonstrate that fine-tuning improves the response of an
LLM to user questions about a simple navigation task,
demonstrating promising potential for improving robot ex-
plainability in HRI. We look forward to comparing these
results to the answers generated by LLMs that are fine-tuned
using PEFT.

We anticipate presenting final results that highlight the
potential of PEFT of LLMs for generating insightful expla-
nations based on ROS log data. Furthermore, through this
research, we hope to contribute to the development of ex-
plainability systems that can be integrated with various ROS-
operating robots. Such systems are crucial for building trust
with human users and addressing robot failures effectively.

Overall, our work underscores the potential of PEFT
in advancing robot explainability, and we look forward to
sharing further insights as our study progresses.
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APPENDIX

APPENDIX I

TABLE I
QUESTIONS FOR EACH SCENARIO

Questions for all scenarios:

Q1: How many waypoints were received?*

Q2: Which waypoints were received?*

Q3: What were the coordinates of all the waypoints the robot received?
Q4: Were all the received waypoints successfully reached?*

Q5: What was the first waypoint the robot reached?

Q6: Where was the last waypoint the robot reached?

Q7: Were all paths feasible during the navigation task?

Q8: Were there any waypoints the robot failed to reach?

Q9: Were there any obstacles the robot encountered during the
navigation task?

Q10: What is the task the robot had to perform?*

Additional questions for scenario 2 & 4:

Q11: Where was the encountered obstacle located?
Q12: How did the robot respond to detected obstacles?

Additional questions for scenario 3 & 4 & 5:

Q13: Why were one or more paths not feasible?
Q14: How did the robot deal with unfeasible path(s)?

The questions indicated with a * are from the work by Sobrin-Hidalgo et al. [11].

APPENDIX II
PROMPT USED FOR ANSWER GENERATION

{"role": "system", "content": "###Instruction### You are an explainability AI
specialised in analyzing and interpreting ROS log messages for autonomous
robots. Your task is to provide clear, concise and factual explanations
based on the logs generated during robot operations. Focus on delivering
precise answers to the user’s questions."}

{"role": "user", "content": "###Context### Based on the ROS log messages in the
following document: [insert ROS log messages]. ###Question### [insert
question]"}}

This prompt was designed using the prompting principles detailed in [20].

APPENDIX III
ASSESSMENT CRITERIA

TABLE II
CRITERIA FOR EXPLANATION QUALITY AND SATISFACTION

Focus Criteria

I consider the explanation to be unnecessarily long
Quality The explanation is written in clear and understandable language
I believe that the explanation is consistent with the robot’s behavior shown in the logs
The explanation has improved my understanding of what happened during the robot task
Satisfaction I consider that the explanation evidences the behavior of the robot

I consider that the explanation is sufficiently reliable and accurate to understand the behavior




APPENDIX IV
FULL ROS LOG MESSAGE

Started controllers: hand_controller

Controller Spawner: Loaded controllers: arm_velocity_trajectory_controller

"Started controllers: joint_state_controller, torso_controller, head_controller,
arm_controller, mobile_base_controller"

Started controllers: force_torque_sensor_controller

Started controllers: imu_sensor_controller

Waiting for move_base action server...

Connected to move_lbase action server.

"Sending goal 1 to move_base: x=1.5, y=-3.0"

Navigating to waypoint 1...

"Transitioning to ACTIVE (from WAITING_FOR_GOAL_ACK, goal:
/tiago_autonomous_navigation-1-25.149)"

GOAL Reached!

"Transitioning to WAITING_FOR_RESULT (from ACTIVE, goal:
/tiago_autonomous_navigation-1-25.149)"

"Transitioning to DONE (from WAITING_FOR_RESULT, goal:
/tiago_autonomous_navigation-1-25.149)"

Reached waypoint 1

"Sending goal 2 to move_base: x=4.0, y=-7.0"

Navigating to waypoint 2...

"Transitioning to ACTIVE (from WAITING_FOR_GOAL_ACK, goal:
/tiago_autonomous_navigation-2-34.359)"

GOAL Reached!

"Transitioning to WAITING_FOR_RESULT (from ACTIVE, goal:
/tiago_autonomous_navigation-2-34.359)"

"Transitioning to DONE (from WAITING_FOR_RESULT, goal:
/tiago_autonomous_navigation-2-34.359)"

Reached waypoint 2

"Sending goal 3 to move_base: x=2.0, y=-10.0"

Navigating to waypoint 3...

"Transitioning to ACTIVE (from WAITING_FOR_GOAL_ACK, goal:
/tiago_autonomous_navigation—-3-46.368)"

Failed to get a plan.

Clearing both costmaps outside a square (3.00m) large centered on the robot.

Clearing both costmaps outside a square (1.50m) large centered on the robot.

Rotate recovery behavior started.

Failed to get a plan.

Aborting because a valid plan could not be found. Even after executing all recovery
behaviors

"Transitioning to WAITING_FOR_RESULT (from ACTIVE, goal:
/tiago_autonomous_navigation-3-46.368)"

"Transitioning to DONE (from WAITING_FOR_RESULT, goal:
/tiago_autonomous_navigation-3-46.368)"

Failed to reach waypoint 3



APPENDIX V
PRELIMINARY RESULTS

TABLE III

ANSWERS GENERATED BY GPT-3.5-TURBO-0125 (NOT FINE-TUNED)

Question

Answer

Q1. How many waypoints were received?

Q2. Which waypoints were received?

Q3. What were the coordinates of all the
waypoints the robot received?

Q4. Were all waypoints successfully reached?

Q5. What was the first waypoint the robot
reached?

Q6. Where was the last waypoint the robot
reached?

Q7. Were all paths feasible during the naviga-
tion task?

Q8. Were there any waypoints the robot failed
to reach?

Q9. Were there any obstacles the robot encoun-
tered during the navigation task?

Q10. What is the task the robot had to per-
form?

Three waypoints were received based on the log messages.

Waypoints 1 and 2 were successfully reached based on the log messages.
Waypoint 3 was not reached due to a failed plan.

The coordinates of the waypoints the robot received were:

- Waypoint 1: x=1.5, y=-3.0
- Waypoint 2: x=4.0, y=-7.0
- Waypoint 3: x=2.0, y=-10.0

No, not all the waypoints were successfully reached. Waypoints 1 and 2 were
successfully reached, but waypoint 3 was not reached due to a failed plan.

The first waypoint the robot reached was waypoint 1, with coordinates x=1.5
and y=-3.0.

The last waypoint the robot reached was waypoint 2, with coordinates x=4.0
and y=-7.0. Waypoint 3 was not reached due to a failed plan.

No, not all paths were feasible during the navigation task. While the robot
successfully reached waypoints 1 and 2, it failed to reach waypoint 3 due to
a failed plan.

Yes, there was one waypoint that the robot failed to reach. The robot
successfully reached waypoints 1 and 2, but it failed to reach waypoint 3
due to a failed plan.

Based on the provided ROS log messages, it appears that the robot encountered
obstacles or other issues that prevented it from successfully reaching waypoint
3. The log indicates that the robot failed to get a plan and then executed
recovery behaviors, such as clearing costmaps and initiating a rotate recovery
behavior, but was ultimately unable to navigate to waypoint 3. This suggests
that obstacles or navigation difficulties impeded the robot’s progress.

The task the robot had to perform based on the provided ROS log messages
was autonomous navigation to a series of waypoints. The robot received
three goals to navigate to specific coordinates (waypoint 1 at x=1.5, y=-
3.0, waypoint 2 at x=4.0, y=-7.0, and waypoint 3 at x=2.0, y=-10.0). The
robot successfully reached waypoints 1 and 2 but encountered difficulties and
failed to reach waypoint 3 due to the inability to generate a valid plan despite
executing recovery behaviors.




TABLE IV

ANSWERS GENERATED BY GPT-3.5-TURBO-0125 (FULLY FINE-TUNED)

Question

Answer

Q1. How many waypoints were received?

Q2. Which waypoints were received?

Q3. What were the coordinates of all the
waypoints the robot received?

Q4. Were all waypoints successfully reached?

Q5. What was the first waypoint the robot
reached?

Q6. Where was the last waypoint the robot
reached?

Q7. Were all paths feasible during the naviga-
tion task?

Q8. Were there any waypoints the robot failed
to reach?

Q9. Were there any obstacles the robot encoun-
tered during the navigation task?

Q10. What is the task the robot had to per-
form?

Based on the provided ROS log messages, a total of three waypoints were
received. The goals were:

1. Waypoint 1: x=1.5, y=-3.0
2. Waypoint 2: x=4.0, y=-7.0
3. Waypoint 3: x=2.0, y=-10.0

According to the provided ROS log messages, the following waypoints were
received:

1. **Waypoint 1¥*: x=1.5, y=-3.0
2. **Waypoint 2¥*: x=4.0, y=-7.0
3. **Waypoint 3**: x=2.0, y=-10.0

Although the robot failed to reach waypoint 3, the goal for it was still sent
and received by the system.

The robot received the following coordinates for the waypoints in the provided
ROS log messages:

1. **Waypoint 1**: x=1.5, y=-3.0
2. #*Waypoint 2¥*: x=4.0, y=-7.0
3. #*Waypoint 3**: x=2.0, y=-10.0

No, not all the waypoints were successfully reached. Waypoints 1 and 2 were
successfully reached based on the log messages indicating "GOAL Reached!”
and the subsequent transitions to "DONE”. However, waypoint 3 was not
reached as indicated by the failure to generate a valid plan and remaining in
the "DONE” state without reaching the goal.

The first waypoint the robot reached was at coordinates x=1.5, y=-3.0. This
is indicated in the log messages by the successful transition from "WAIT-
ING_FOR_GOAL_ACK” to "ACTIVE,” followed by "GOAL Reached!” and
ultimately "DONE” for the goal with ID ‘/tiago_autonomous_navigation-1-
25.149°.

The last waypoint the robot successfully reached was at coordinates z = 4.0
and y = —7.0, which is waypoint 2. This is confirmed by the transition log
messages indicating that the robot successfully navigated to this waypoint and
then completed all relevant state transitions. The subsequent attempt to reach
waypoint 3 was unsuccessful, as detailed in the recovery attempts and final
failure message.

No, not all planned paths were feasible during the navigation task. The robot
successfully reached waypoints 1 and 2, but it failed to reach waypoint 3. The
logs indicate that the system failed to generate a valid plan despite multiple
attempts and recovery behaviors, resulting in the aborting of the mission to
reach waypoint 3.

Yes, the robot failed to reach waypoint 3. The log messages indicate that
the robot encountered issues during the planning process, and all recovery
behaviors failed to generate a valid plan. This led to the abortion of the mission
to reach waypoint 3.

The ROS log messages do not explicitly state that the robot encountered
specific obstacles during the navigation task. However, the fact that the robot
failed to reach waypoint 3 and the recovery behaviors (such as clearing
costmaps and performing rotate recovery) were unsuccessful in getting a valid
plan suggests that there may have been obstacles in the environment preventing
the robot from finding a viable path to waypoint 3. The repetitive nature of the
clearing attempts and ultimate failure to re-plan indicate a potential obstruction
rather than simple pathfinding issues.

The task the robot had to perform was a sequence of navigation actions.
Specifically, the log messages indicate that the robot was given three consec-
utive goals (waypoints) to reach via the “move_base” action server.

1. The first goal was to reach the coordinates x = 1.5,y = —3.0.
2. The second goal was to reach the coordinates x = 4.0,y = —7.0.
3. The third goal was to reach the coordinates x = 2.0,y = —10.0.

The robot successfully navigated to and reached the first two waypoints, but
failed to reach the third waypoint due to an inability to generate a valid plan
despite executing recovery behaviors.




