
A Hierarchical Monitoring and Diagnosis System for Autonomous Robots

Gerald Steinbauer-Wagner, Leo Fürbaß, Marco De Bortoli

Institute for Software Technology
Graz University of Technology, Graz, Austria

Email: steinbauer@ist.tugraz.at

Abstract

This paper addresses the need for autonomous robots
to achieve flexible goals in dynamic environments.
We propose a hierarchical diagnosis concept for lay-
ered control architectures, ensuring consistent infor-
mation and reliable decision-making. Our approach
addresses challenges like failing actions, uncertain
observations, and unmodeled events by propagating
observations and diagnoses throughout the hierarchy.
This enhances adaptability and dependability in var-
ious domains.

I. Introduction

There is an increasing demand for autonomous robots
that can pursue flexible goals in an open and dynamic
context. This asks for true autonomy, requiring mini-
mal or no human intervention. In contrast, even com-
mercial robot systems often fail to pursue their goals
and interact with an unpredictable dynamic environ-
ment. There are various reasons for this shortcoming
such as failing actions, not modeled or observed
changes in the environment, or issues in the percep-
tion. In this paper, we propose a hierarchical diagno-
sis concept for a control architecture for autonomous
robots. Such architectures are usually organized in
layers. When progressing from one layer up to the
next usually information is abstracted and the scope
of the decision-making is narrowed conceptually and
widened temporally. Moreover, the higher layer uses
the lower one to refine and execute its decisions.
In this interplay information, commands, and execu-
tion results need to be exchanged while performing
abstraction and concretization respectively. In order
to allow dependable decision-making and execution
the knowledge and information on the various levels
needs to be kept consistent with the evolution of the
environment. A standard architecture is the three-
tier architecture that combines a deliberative layer
with planning capabilities, an executive layer able
to execute intermediate tasks by refining them into
skills (atomic actions), and a skill layer able to
handle the execution of such skills [12]. Monitoring
and diagnosis need to be performed on the various
levels in the corresponding layer context. The main
challenges for an intelligent agent and its control

architecture performing non-trivial tasks in dynamic
environments are: (1) skills (actions) that are not able
to establish all its intended effects, (2) observations
about the environment that are uncertain or wrong, (3)
exogenous events changing the environment in a way
the agent has not modeled or is not aware of, and (4)
failed or interrupted skills (actions) where the result-
ing situation is not entirely clear. All these challenges
may render the local context of the various levels in-
consistent jeopardizing dependable decision-making
and execution. In order to address these challenges we
propose a holistic hierarchical diagnosis concept that
propagates local observations, execution results, and
diagnoses up and down the control hierarchy to allow
reasoning with a broadening context if issues cannot
be detected or handled in the corresponding layer. The
diagnosis concept presented in this paper augments
our planning and execution framework, which was
designed in a general way and can be easily adapted
to different domains.

II. The control architecture

In this section, we briefly describe the general
architecture of the control framework. It resembles
the general structure used for multi-robot systems,
and the main parts of the software are divided into a
three-level hierarchy, as shown in Figure 1. The most
abstract layer, namely the High-Level, involves task
generation, assignment, and coordination between
robots. It is responsible for the long-term strategy and
monitoring of it. The Mid-Level is concerned with
task refinement and execution by a specific agent
through Behavior Trees [7]. Given a High-Level
action, this layer transforms it into the corresponding
Behavior Tree. The Behavior Tree decomposes the
actions into a set of subtasks, represented as an
extended state machine. To give an insight, consider
a high-level action of passing through a closed door.
Such action will be transformed into a set of different
subtasks by the Mid-Level. Passing to the door might
be represented by a sequence of checking the door
state, opening the door, passing it, and finally closing
it. This level of detail is neither useful nor helpful
for the High-Level. The Low-Level consists of the
robot platform, i.e., sensing, low-level monitoring
and control of actuators as well as basic skills such



DISPATCHING
AND MONITORING

GOAL
REASONER PLANNER

KNOWLEGE
BASE

All Goals

(re)planning

Selected Goals

Plan
Update

HIGH-LEVEL

Behavior Tree

MID-LEVEL

SKILL EXECUTION

LOW-LEVEL

Action Feedback

Robot n

Task Feedback

Fig. 1. Basic control architecture.

as localization and navigation. Here the subtasks
generated at the Mid-Level are further refined.

A. The High-Level Planning and Dispatching
System

The Planning and Dispatching Framework imple-
ments a control strategy for multi-agent systems in
dynamic domains. It is based on three main compo-
nents: (1) a Goal Reasoner, (2) a Planner, and (3) a
Dispatching and Monitoring system. In Figure 2, the
interaction between the components is shown. The
Dispatching and Monitoring component plays the role
of the main controller that invokes the Goal Reasoner
[1], and consequently the planner, and executes the
obtained plan, by sending the tasks to the Mid-Level
which builds the corresponding Behavior Trees. The
plan execution is constantly monitored for issues that
may require regeneration of the goals of the plan, e.g.,
failed actions, deadline violations, or external events.
The planner module is based on Temporal PDDL
[11]. Given a fixed domain, namely the description of
possible actions, and the instance, generated from the
Knowledge Base, the result of the planning process is
a temporal plan, which is represented by the schedule
σ, formed by a set of triples ⟨a, ta, da⟩, where a is
an action, ta is the time when the action a needs to
be started, and da is the duration of the action. The
Knowledge Base, namely the set of beliefs about the
status of the world, is a crucial component. For easier
integration with PDDL planning, the Knowledge Base
reflects PDDL syntax. It consists of a set of atoms.
An atom is a grounded predicate. For instance, the
atom (at r l) specifies that the robot r is at location
l. Each Temporal PDDL action of the plan features
a set of preconditions and effects. The preconditions

of an action a are formed by three sets of atoms:
the start condition cond⊢(a), the invariant condition
cond↔(a), and the end condition cond⊣(a). The
effects are instead divided into the start positive (add)
effects eff+⊢ (a), the start negative (remove) effects
eff−⊢ (a), the end positive (add) effects eff+⊣ (a) and
the end negative (remove) effects eff−⊣ (a). Every
time an action is dispatched, the Knowledge Base
KB is checked for consistency by making sure
that cond⊢(a) ∈ KB and cond↔(a) ∈ KB . If
it holds, we then apply the starting effect of the
action, with KB ← KB ∪ eff+⊢ (a) and KB ←
KB \ eff−⊢ (a). The same procedure is applied for
end actions, considering end conditions and effects
instead. ROSPlan follows a similar approach [5]. As
a consequence, in case of failures or mismatches
between the Knowledge Base and the real world, it is
crucial to diagnose the problem accurately and derive
the corresponding effects on the set of beliefs. In fact,
an inconsistent Knowledge Base may compromise the
entire decision-making. In fact, by using diagnosis
and monitoring, it may be possible to track the
specific problem in the interaction of the agent with
its environment and fix the KB accordingly, allowing
it to pursue its goals. Therefore, the diagnosis system
presented in the next chapter has been developed.

B. Control and Recovery Strategy in the
Mid-Level

The use of Behaviour Trees (BT) in Mid-Level not
only allows realizing action refinement easily but
also the integration with supervison and recovery
strategies. Conditions, fallbacks, and other predefined
types of nodes allow for an easy implementation of
both supervision and recovery. For this, the orig-
inal BT that refines an action is transferred into
a dependable failsafe version, where patterns for
fault monitoring and mitigation are encoded using
domain/expert knowledge. An example is the use of a
ReactiveSequence node, to continuously check guard-
ing conditions. Moreover, this pattern is a subtree of
a BT having a RetryUntilSuccessful node as the root.
This node retries to execute the whole subtree in case
of failure, within a predefined maximum number of
attempts. This allows the implementation of a simple
local recovery strategy. If recovery fails on this level,
the problem has to be handled either through local
diagnosis or by the deliberative layer.

III. Hierarchical Monitoring and
Diagnosis for Decision Making and
Execution

The use of an architecture with various levels of
abstraction, necessary to tackle complex dynamic do-
mains requiring planning, synchronization, and skill



Layer i

Diagnoser i

Monitor i

DM and
Execution i

Context i

Layer i + 1

Diagnoser i + 1

Monitor i + 1

DM and
Execution i + 1

Context i + 1

command(x)
ϕ(x)

feedback
ψ = ⟨s,∆⟩

Fig. 2. Hierarchical Interaction, Monitoring, and Diagno-
sis.

execution, poses some challenges regarding the im-
plementation of a holistic monitoring and diagnosis
system. In order to correctly detect and identify
problems in task planning and execution, the system
must be aware of the different layers and knowledge
representations used at the different layers. Moreover,
it needs to understand how the different layers interact
and whether there is already a local mechanism for
fault detection and handling on some layers suffi-
cient to deal with a problem. Hierarchical diagnosis
is a well-known concept, to speed up diagnosis in
complex systems using abstraction and clustering [6].
In our case, the challenge is to combine informa-
tion and diagnosis results from different levels of
the architecture into a globally consistent diagnosis.
An interesting aspect regarding diagnosis is that the
temporal context and the conceptual context show an
inverse proportional nature along the levels. While
the level of granularity of facts shrinks when moving
up the hierarchy (abstraction of actions), the tem-
poral context becomes wider (a sequence of actions
versus only one behavior). In order to address these
challenges we propose a hierarchical monitoring and
diagnosis system where the interaction between a
layer i + 1 and i follows the pattern shown in
Figure 2. We assume that each layer i possesses its
individual set of the following components: (1) con-
text, (2) decision-making and execution (DME), (3)
monitoring, and (4) diagnosis. The implementation
of the individual components depends on the layer.
In the subsequent sections, we will provide details
for the layers used in our architecture. The context
holds all information relevant for decision-making
and execution. We assume the context is represented
using some language Li. DME can come up with a
decision on what activities need to be performed to
achieve a given goal or command and can execute
that decision. The monitor supervises the correct
execution of the decision while the diagnoser provides
explanations of why an execution failed. DME might
be able to use those diagnoses to reconfigure the
decision and execution or propagate them to the
higher layer if it is not able to handle it sufficiently. In
order to represent the interaction between layer i+1

and i we assume that layer i + 1 issues commands
represented in Li+1. For layer i we assume a function
ϕ : Li+1 → Li which performs the concretization
of that command. Layer i will work on the achieve-
ment of that command. During the handling of the
command intermediate observations o represented in
Li will be propagated to layer l + 1 that can use
these observations for monitoring. In order to allow
an integration of o in the context i+1 we assume an
abstraction function ψ : Li → Li+1. If the processing
of the command concludes (nominal or abnormal)
the feedback tuple ⟨s,∆⟩ where s ∈ {success, fail}
represents the execution result and ∆ (represented in
Li) potential explanations for a failed execution. A
reported failure occurs if a monitor at layer i detects
a problem or if a lower layer’s issue is propagated
and unresolved. Even reported success may not mean
correct completion, as broader context issues might
only be detectable in higher layers. Thus, higher-layer
monitors must verify lower-layer execution results.

A. Skill Layer (Low-Level)

The lowest layer is responsible for the execution
of atomic skills like navigation or manipulation. As
usual, such a layer is implemented using the Robot
Operating System (ROS) [18]. Besides means of
structuring data communication (topics) and compu-
tation (nodes), it provides concepts for implementing
behaviors (skills) via the action concept. It allows
running a concurrent behavior such as navigating to
a goal [16] while reporting intermediate feedback
on the progress as well as the final result of the
skill execution. Standard implementations such as the
ROS navigation stack contain hand-coded monitors
(e.g. tracking the progress of the robot pose) but
do not provide detailed explanations in the case of
a failure. Diagnosers such as the one proposed in
[9] that can provide detailed explanations about a
navigation fault need to be integrated. Moreover, only
rudimentary recovery behaviors are implemented in
the navigation stack. Thus, a diagnosis and integration
into the corresponding context need to be done at
the higher layers. Intermediate observations might be
provided by dedicated perception modules such as
a localization module that tracks the robot pose [21].
The context and observations of the skill layer is built
up by continuous values representing circumstances
such as the robot pose (⟨x, y, θ⟩). Also, more detailed
information such as the particle set in the localization
can be used to create a monitor [10].

B. Executive Layer (Mid-Level)

The task of the executive layer is to refine the
abstract actions dispatched by the deliberative layer
and supervise the execution of the refined actions.
While it is common to use the concept of hierarchical



task networks (HTNs) [17] or BDI architectures [14]
for the implementation we use the concept of Be-
havior Trees [8] because of its simpler use and ROS
integration. In contrast to a declarative approach such
as planning BTs are composed of different nodes (e.g.
conditions, sequence, fallback, atomic action) and
represent a control policy. The execution leads to a
trace of atomic actions that is dependent on the actual
development of the context. Any legal termination of
a tree counts as a success. If any node in the tree
fails a fail is reported. The issue is that BTs can
replicate an entire imperative programming language,
necessitating runtime verification and full operational
semantics for complete diagnosis [20, 3]. For now, we
consider a BT as an ordered sequence of sub-tasks for
the sake of simplicity. After the execution of each
sub-task, feedback from the low-level is returned,
stating the successful or failed execution of the task.
In case of failure, the following subtasks are not exe-
cuted, and the Mid-Level notifies the failed execution
of the PDDL action to the High-Level. In case of a
successful execution of the entire Behavior Tree, the
Knowledge Base is updated at the High-Level with
the effect of the PDDL action. However, determining
which effects have to be applied and which do not
in case of a failure in the execution of the BT is not
trivial. In order to make the KB consistent, we need
to know the nature of the failure and how it affects
the other elements of the world. For this reason, a
local diagnosis needs to be performed on the Behavior
Tree, supported by observations made at the Mid-
Level and the structure of the entire BT execution.
Moreover, such a technique is applied even in the
case of positive feedback from the Low-Level. Some
failures may not have been detected at the Low-Level
because of its limited context. The application of a
diagnosis technique, which takes into consideration a
broader set of observations, may help to detect hidden
faults in the execution.

C. Deliberative Layer (High-Level)

As described above a High-Level PDDL action is
refined at the Mid-Level into a Behavior Tree. The
diagnoser on the high level is based on History-
Based Diagnosis [15] and follows the idea presented
in [13]. It is triggered either by the monitor at its
level or by failure reports and diagnoses reported
from the lower levels. The monitor is currently a
simple consistency check between the Knowledge
Base and reported observations. As pointed out above
the Knowledge Base is updated with an action’s
effects in the case of its successful execution or
by the integration of observations from the lower
levels. In the latter case we follow the concept of
sensing actions [19] that can override facts in the
Knowledge Base. Once an inconsistency is triggered
the diagnoser aims to find an alternative sequence

of the actions executed so far whose effects are
consistent with the Knowledge Base and the recently
made inconsistent (unexpected) observation. Alterna-
tives are generated by either exchanging actions with
a variant modeling a particular fault mode of that
action or by adding actions that model the occurrence
of exogenous events. The downside of this approach
is that it is computationally extremely demanding and
explicit models of all action faults and exogenous
events are needed. If a consistent execution trace is
found, the Knowledge Base is updated according to
the effect of its actions.

IV. What is missing?

The integrated architecture proposed in this paper is
still a work in progress. Nevertheless, the proposed
control architecture and the proposed monitoring and
diagnosis schema had been implemented as a proof
of concept and successfully used in domains such
as the RoboCup Logistics League (RCLL) [4]. The
limitation here is that the approach was implemented
ad-hoc with mostly separate concepts on the individ-
ual levels and a full formal integration in a truly
hierarchical diagnosis approach is still missing. In
fact, during RCLL games, our diagnostic approach
ensures robust and solid execution, preventing per-
manent production halts and always allowing for
some recovery strategy. However, the lack of bet-
ter integration of diagnostics across different levels
sometimes necessitates aggressive recovery strategies,
potentially discarding recoverable products unneces-
sarily. The difficulty is here still the proper mapping
of the individual representations of contexts, decision-
making approaches, execution semantics, diagnosers,
and monitors a unified representation. A promising
way is shown in [2] where the Situation Calculus and
the agent language ConGolog as a unified representa-
tion across levels in agent supervision. Unfortunately,
such methods rely heavily on reasoning and are there-
fore computationally very expensive. Moreover, also
challenges remain on the individual levels such as the
proper monitoring and diagnosis of complex Behavior
Trees because of the operational semantics. Another
important aspect is the reuse of domain knowledge
and common sense knowledge which are of utmost
importance for feasible monitoring and diagnosis.
Here still a lot of manual work is needed hindering the
automation of the reuse and also limiting the amount
of usable knowledge. This is currently particularly
interesting as we see Large Language Models (LLMs)
as compiled common sense knowledge that is richer
and easier to access as attempts like Cyc.

With this workshop paper, we like to stimulate a
discussion about the idea of an integrated monitoring
and diagnosis approach for cognitive architecture and
look forward to valuable feedback on our ideas.



References

[1] David W. Aha. Goal Reasoning: Foundations,
Emerging Applications, and Prospects. AI Mag-
azine, 39(2):3–24, June 2018.

[2] Bita Banihashemi, Giuseppe De Giacomo, Yves
Lespérance, et al. Hierarchical Agent Super-
vision. In AAMAPROCEEDINGS OF THE
INTERNATIONAL JOINT CONFERENCE ON
AUTONOMOUS AGENTS AND MULTIAGENT
SYSTEMS, volume 2, pages 1432–1440. Interna-
tional Foundation for Autonomous Agents and
Multiagent Systems (IFAAMAS), 2018.

[3] Ezio Bartocci, Yliès Falcone, Adrian Fran-
calanza, and Giles Reger. Introduction to Run-
time Verification, pages 1–33. Springer Interna-
tional Publishing, Cham, 2018.

[4] David Beikircher, Marco De Bortoli, Leo
Fürbaß, Thomas Kernbauer, Peter Kohout, Do-
minik Lampel, Anna Masiero, Stefan Moser,
Martin Nagele, and Gerald Steinbauer-Wagner.
Robust Integration of Planning, Execution, Re-
covery and Testing to Win the RoboCup Lo-
gistics League. In Cédric Buche, Alessandra
Rossi, Marco Simões, and Ubbo Visser, editors,
RoboCup 2023: Robot World Cup XXVI, pages
362–373, Cham, 2024. Springer Nature Switzer-
land. ISBN 978-3-031-55015-7.

[5] Michael Cashmore, Maria Fox, Derek Long,
Daniele Magazzeni, Bram Ridder, Arnau Car-
rera, Narcis Palomeras, Natalia Hurtos, and
Marc Carreras. Rosplan: Planning in the robot
operating system. In Proceedings of the inter-
national conference on automated planning and
scheduling, volume 25, 2015.

[6] Luca Chittaro and Roberto Ranon. Hierarchi-
cal model-based diagnosis based on structural
abstraction. Artificial Intelligence, 155(1):147–
182, 2004.

[7] Michele Colledanchise and Petter Ögren. Be-
havior trees in robotics and AI: An introduction.
CRC Press, Boca Raton, Florida, USA, 2018.

[8] Michele Colledanchise and Peter Ögren. How
Behavior Trees Modularize Hybrid Control Sys-
tems and Generalize Sequential Behavior Com-
positions, the Subsumption Architecture, and
Decision Trees. IEEE Transactions on Robotics,
33(2):372–389, April 2017.

[9] Matthias Eder and Gerald Steinbauer-Wagner.
A fast method for explanations of failures
in optimization-based robot motion planning.
In Andreas Müller and Mathias Brandstötter,
editors, Advances in Service and Industrial
Robotics, pages 114–121, Cham, 2022. Springer
International Publishing. ISBN 978-3-031-
04870-8.

[10] Matthias Eder, Michael Reip, and Gerald Stein-
bauer. Creating a robot localization monitor

using particle filter and machine learning ap-
proaches. Applied Intelligence, 52(6):6955–
6969, 2022.

[11] Maria Fox and Derek Long. PDDL2.1: An
extension to PDDL for expressing temporal
planning domains. J. Artif. Intell. Res. (JAIR),
20:61–124, 12 2003.

[12] Erann Gat, R. Peter Bonnasso, Robin Murphy,
and Aaai Press. On three-layer architectures. In
Artificial Intelligence and Mobile Robots, pages
195–210. AAAI Press, 1997.

[13] Stephan Gspandl, Ingo Pill, Michael Reip, Ger-
ald Steinbauer, and Alexander Ferrein. Belief
management for high-level robot programs. In
Twenty-Second International Joint Conference
on Artificial Intelligence, 2011.

[14] F.F. Ingrand, R. Chatila, R. Alami, and
F. Robert. Prs: a high level supervision and con-
trol language for autonomous mobile robots. In
Proceedings of IEEE International Conference
on Robotics and Automation, volume 1, pages
43–49, 1996.

[15] Gero Iwan. History-based diagnosis templates
in the framework of the situation calculus. AI
Communications, 15(1):31–45, 2002.

[16] Eitan Marder-Eppstein, Eric Berger, Tully
Foote, Brian Gerkey, and Kurt Konolige. The
Office Marathon: Robust Navigation in an In-
door Office Environment. In International Con-
ference on Robotics and Automation, 2010.

[17] Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami,
Ugur Kuter, J William Murdock, Dan Wu, and
Fusun Yaman. SHOP2: An HTN planning sys-
tem. Journal of Artificial Intelligence Research,
20:379–404, 2003.

[18] Morgan Quigley, Brian Gerkey, Ken Conley,
Josh Faust, Tully Foote, Jeremy Leibs, Eric
Berger, Rob Wheeler, and Andrew Ng. ROS:
an open-source Robot Operating System. In
Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source
Robotics, Kobe, Japan, May 2009.

[19] Raymond Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing
Dynamical Systems. MIT Press, 2001.

[20] Matteo Tadiello and Elena Troubitsyna. Ver-
ifying Safety of Behaviour Trees in Event-B.
Electronic Proceedings in Theoretical Computer
Science, 371:139–155, September 2022.

[21] S. Thrun, D. Fox, W. Burgard, and F. Dellaert.
Robust Monte Carlo Localization for Mobile
Robots. Artificial Intelligence, 128(1-2):99–141,
2000.


